




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.2.在△ABC中,∠C=90°,tanA=125,△ABC的周長為60,那么△ABCA.60 B.30 C.240 D.1203.下列關于x的方程一定有實數解的是()A. B.C. D.4.如圖,直線l1、l2、l3表示三條相互交叉的公路,現要建一個貨物中轉站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處5.如圖是由四個小正方體疊成的一個幾何體,它的左視圖是()A. B. C. D.6.甲、乙兩人參加射擊比賽,每人射擊五次,命中的環數如下表:次序第一次第二次第三次第四次第五次甲命中的環數(環)67868乙命中的環數(環)510767根據以上數據,下列說法正確的是()A.甲的平均成績大于乙 B.甲、乙成績的中位數不同C.甲、乙成績的眾數相同 D.甲的成績更穩定7.計算的正確結果是()A. B.- C.1 D.﹣18.如果一元二次方程2x2+3x+m=0有兩個相等的實數根,那么實數m的取值為()A.m> B.m C.m= D.m=9.如圖,一個可以自由轉動的轉盤被等分成6個扇形區域,并涂上了相應的顏色,轉動轉盤,轉盤停止后,指針指向藍色區域的概率是()A. B.C. D.10.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.有一組數據:2,3,5,5,x,它們的平均數是10,則這組數據的眾數是.12.使得關于x的分式方程的解為負整數,且使得關于x的不等式組有且僅有5個整數解的所有k的和為_____.13.在△ABC中,∠ABC<20°,三邊長分別為a,b,c,將△ABC沿直線BA翻折,得到△ABC1;然后將△ABC1沿直線BC1翻折,得到△A1BC1;再將△A1BC1沿直線A1B翻折,得到△A1BC2;…,若翻折4次后,得到圖形A2BCAC1A1C2的周長為a+c+5b,則翻折11次后,所得圖形的周長為_____________.(結果用含有a,b,c的式子表示)14.不透明袋子中裝有5個紅色球和3個藍色球,這些球除了顏色外沒有其他差別.從袋子中隨機摸出一個球,摸出藍色球的概率為_______.15.如圖,在等腰中,,點在以斜邊為直徑的半圓上,為的中點.當點沿半圓從點運動至點時,點運動的路徑長是________.16.如圖,矩形ABCD的邊AB在x軸上,AB的中點與原點O重合,AB=2,AD=1,點E的坐標為(0,2).點F(x,0)在邊AB上運動,若過點E、F的直線將矩形ABCD的周長分成2:1兩部分,則x的值為__.17.若點A(1,m)在反比例函數y=的圖象上,則m的值為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=3cm,BC=5cm,AE=AB,點P從B點出發,以1cm/s的速度沿BC→CD→DA運動至A點停止,則從運動開始經過多少時間,△BEP為等腰三角形.19.(5分)興發服裝店老板用4500元購進一批某款T恤衫,由于深受顧客喜愛,很快售完,老板又用4950元購進第二批該款式T恤衫,所購數量與第一批相同,但每件進價比第一批多了9元.第一批該款式T恤衫每件進價是多少元?老板以每件120元的價格銷售該款式T恤衫,當第二批T恤衫售出時,出現了滯銷,于是決定降價促銷,若要使第二批的銷售利潤不低于650元,剩余的T恤衫每件售價至少要多少元?(利潤=售價﹣進價)20.(8分)如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經過O,A兩點,且頂點在BC邊上,對稱軸交AC于點D,動點P在拋物線對稱軸上,動點Q在拋物線上.(1)求拋物線的解析式;(2)當PO+PC的值最小時,求點P的坐標;(3)是否存在以A,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.21.(10分)如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當第一次與外切時,求平移的時間.22.(10分)數學不僅是一門學科,也是一種文化,即數學文化.數學文化包括數學史、數學美和數學應用等多方面.古時候,在某個王國里有一位聰明的大臣,他發明了國際象棋,獻給了國王,國王從此迷上了下棋,為了對聰明的大臣表示感謝,國王答應滿足這位大臣的一個要求.大臣說:“就在這個棋盤上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要這么一點米粒?”國王哈哈大笑.大臣說:“就怕您的國庫里沒有這么多米!”國王的國庫里真沒有這么多米嗎?題中問題就是求是多少?請同學們閱讀以下解答過程就知道答案了.設,則即:事實上,按照這位大臣的要求,放滿一個棋盤上的個格子需要粒米.那么到底多大呢?借助計算機中的計算器進行計算,可知答案是一個位數:,這是一個非常大的數,所以國王是不能滿足大臣的要求.請用你學到的方法解決以下問題:我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數是上一層燈數的倍,則塔的頂層共有多少盞燈?計算:某中學“數學社團”開發了一款應用軟件,推出了“解數學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數學問題的答案:已知一列數:,其中第一項是,接下來的兩項是,再接下來的三項是,以此類推,求滿足如下條件的所有正整數,且這一數列前項和為的正整數冪.請直接寫出所有滿足條件的軟件激活碼正整數的值.23.(12分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數y=kx+b的圖象和反比例函數y=的圖象的兩個交點.求反比例函數和一次函數的解析式;求直線AB與x軸的交點C的坐標及△AOB的面積;直接寫出一次函數的值小于反比例函數值的x的取值范圍.24.(14分)某學校為了解學生的課余活動情況,抽樣調查了部分學生,將所得數據處理后,制成折線統計圖(部分)和扇形統計圖(部分)如圖:(1)在這次研究中,一共調查了學生,并請補全折線統計圖;(2)該校共有2200名學生,估計該校愛好閱讀和愛好體育的學生一共有多少人?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.2、D【解析】
由tanA的值,利用銳角三角函數定義設出BC與AC,進而利用勾股定理表示出AB,由周長為60求出x的值,確定出兩直角邊,即可求出三角形面積.【詳解】如圖所示,由tanA=125設BC=12x,AC=5x,根據勾股定理得:AB=13x,由題意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,則△ABC面積為120,故選D.【點睛】此題考查了解直角三角形,銳角三角函數定義,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.3、A【解析】
根據一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根逐一判斷即可得.【詳解】A.x2-mx-1=0中△=m2+4>0,一定有兩個不相等的實數根,符合題意;
B.ax=3中當a=0時,方程無解,不符合題意;
C.由可解得不等式組無解,不符合題意;
D.有增根x=1,此方程無解,不符合題意;
故選A.【點睛】本題主要考查方程的解,解題的關鍵是掌握一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根.4、D【解析】
到三條相互交叉的公路距離相等的地點應是三條角平分線的交點.把三條公路的中心部位看作三角形,那么這個三角形兩個內角平分線的交點以及三個外角兩兩平分線的交點都滿足要求.【詳解】滿足條件的有:(1)三角形兩個內角平分線的交點,共一處;(2)三個外角兩兩平分線的交點,共三處.如圖所示,故選D.【點睛】本題考查了角平分線的性質;這是一道生活聯系實際的問題,解答此類題目時最直接的判斷就是三角形的角平分線,很容易漏掉外角平分線,解答時一定要注意,不要漏解.5、A【解析】試題分析:如圖是由四個小正方體疊成的一個幾何體,它的左視圖是.故選A.考點:簡單組合體的三視圖.6、D【解析】
根據已知條件中的數據計算出甲、乙的方差,中位數和眾數后,再進行比較即可.【詳解】把甲命中的環數按大小順序排列為:6,6,7,8,8,故中位數為7;把乙命中的環數按大小順序排列為:5,6,7,7,10,故中位數為7;∴甲、乙成績的中位數相同,故選項B錯誤;根據表格中數據可知,甲的眾數是8環,乙的眾數是7環,∴甲、乙成績的眾數不同,故選項C錯誤;甲命中的環數的平均數為:x甲乙命中的環數的平均數為:x乙∴甲的平均數等于乙的平均數,故選項A錯誤;甲的方差S甲2=15[(6?7)2+(7?7)2+(8?7)2+(6?7)2乙的方差=15[(5?7)2+(10?7)2+(7?7)2+(6?7)2+(7?7)2因為2.8>0.8,所以甲的穩定性大,故選項D正確.故選D.【點睛】本題考查方差的意義.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩定;反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.同時還考查了眾數的中位數的求法.7、D【解析】
根據有理數加法的運算方法,求出算式的正確結果是多少即可.【詳解】原式故選:D.【點睛】此題主要考查了有理數的加法的運算方法,要熟練掌握,解答此題的關鍵是要明確:①同號相加,取相同符號,并把絕對值相加.②絕對值不等的異號加減,取絕對值較大的加數符號,并用較大的絕對值減去較小的絕對值.互為相反數的兩個數相加得1.③一個數同1相加,仍得這個數.8、C【解析】試題解析:∵一元二次方程2x2+3x+m=0有兩個相等的實數根,∴△=32-4×2m=9-8m=0,解得:m=.故選C.9、B【解析】試題解析:∵轉盤被等分成6個扇形區域,而黃色區域占其中的一個,∴指針指向黃色區域的概率=.故選A.考點:幾何概率.10、D【解析】
根據正方形的邊長,根據勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質,相似三角形的性質和判定,能求出△ABR和△RDS的面積是解此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】根據平均數為10求出x的值,再由眾數的定義可得出答案.解:由題意得,(2+3+1+1+x)=10,解得:x=31,這組數據中1出現的次數最多,則這組數據的眾數為1.故答案為1.12、12.1【解析】
依據分式方程=1的解為負整數,即可得到k>,k≠1,再根據不等式組有1個整數解,即可得到0≤k<4,進而得出k的值,從而可得符合題意的所有k的和.【詳解】解分式方程=1,可得x=1-2k,
∵分式方程=1的解為負整數,
∴1-2k<0,
∴k>,
又∵x≠-1,
∴1-2k≠-1,
∴k≠1,
解不等式組,可得,
∵不等式組有1個整數解,
∴1≤<2,
解得0≤k<4,
∴<k<4且k≠1,
∴k的值為1.1或2或2.1或3或3.1,
∴符合題意的所有k的和為12.1,
故答案為12.1.【點睛】本題考查了解一元一次不等式組、分式方程的解,解題時注意分式方程中的解要滿足分母不為0的情況.13、2a+12b【解析】如圖2,翻折4次時,左側邊長為c,如圖2,翻折5次,左側邊長為a,所以翻折4次后,如圖1,由折疊得:AC=A===,所以圖形的周長為:a+c+5b,因為∠ABC<20°,所以,翻折9次后,所得圖形的周長為:2a+10b,故答案為:2a+10b.14、【解析】分析:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值即其發生的概率.詳解:由于共有8個球,其中籃球有5個,則從袋子中摸出一個球,摸出藍球的概率是,故答案是.點睛:此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.15、π【解析】
取的中點,取的中點,連接,,,則,故的軌跡為以為圓心,為半徑的半圓弧,根據弧長公式即可得軌跡長.【詳解】解:如圖,取的中點,取的中點,連接,,,∵在等腰中,,點在以斜邊為直徑的半圓上,∴,∵為的中位線,∴,∴當點沿半圓從點運動至點時,點的軌跡為以為圓心,為半徑的半圓弧,∴弧長,故答案為:.【點睛】本題考查了點的軌跡與等腰三角形的性質.解決動點問題的關鍵是在運動中,把握不變的等量關系(或函數關系),通過固定的等量關系(或函數關系),解決動點的軌跡或坐標問題.16、或﹣.【解析】
試題分析:當點F在OB上時,設EF交CD于點P,可求點P的坐標為(,1).則AF+AD+DP=3+x,CP+BC+BF=3﹣x,由題意可得:3+x=2(3﹣x),解得:x=.由對稱性可求當點F在OA上時,x=﹣,故滿足題意的x的值為或﹣.故答案是或﹣.【點睛】考點:動點問題.17、3【解析】試題解析:把A(1,m)代入y=得:m=3.所以m的值為3.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)從運動開始經過2s或s或s或s時,△BEP為等腰三角形.【解析】
(1)根據內錯角相等,得到兩邊平行,然后再根據三角形內角和等于180度得到另一對內錯角相等,從而證得原四邊形是平行四邊形;(2)分別考慮P在BC和DA上的情況求出t的值.【詳解】解:(1)∵∠BAC=∠ACD=90°,∴AB∥CD,∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB,∴AD∥BC,∴四邊形ABCD是平行四邊形.(2)∵∠BAC=90°,BC=5cm,AB=3cm,′由勾股定理得:AC=4cm,即AB、CD間的最短距離是4cm,∵AB=3cm,AE=AB,∴AE=1cm,BE=2cm,設經過ts時,△BEP是等腰三角形,當P在BC上時,①BP=EB=2cm,t=2時,△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=BE=1cm∵cos∠ABC=,∴BP=cm,t=時,△BEP是等腰三角形;③BE=PE=2cm,作EN⊥BC于N,則BP=2BN,∴cosB=,∴,BN=cm,∴BP=,∴t=時,△BEP是等腰三角形;當P在CD上不能得出等腰三角形,∵AB、CD間的最短距離是4cm,CA⊥AB,CA=4cm,當P在AD上時,只能BE=EP=2cm,過P作PQ⊥BA于Q,∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠QAD=∠ABC,∵∠BAC=∠Q=90°,∴△QAP∽△ABC,∴PQ:AQ:AP=4:3:5,設PQ=4xcm,AQ=3xcm,在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,∴x=,AP=5x=cm,∴t=5+5+3﹣=,答:從運動開始經過2s或s或s或s時,△BEP為等腰三角形.【點睛】本題主要考查平行四邊形的判定定理及一元二次方程的解法,要求學生能夠熟練利用邊角關系解三角形.19、(1)第一批T恤衫每件的進價是90元;(2)剩余的T恤衫每件售價至少要80元.【解析】
(1)設第一批T恤衫每件進價是x元,則第二批每件進價是(x+9)元,再根據等量關系:第二批進的件數=第一批進的件數可得方程;(2)設剩余的T恤衫每件售價y元,由利潤=售價﹣進價,根據第二批的銷售利潤不低于650元,可列不等式求解.【詳解】解:(1)設第一批T恤衫每件進價是x元,由題意,得,解得x=90經檢驗x=90是分式方程的解,符合題意.答:第一批T恤衫每件的進價是90元.(2)設剩余的T恤衫每件售價y元.由(1)知,第二批購進=50件.由題意,得120×50×+y×50×﹣4950≥650,解得y≥80.答:剩余的T恤衫每件售價至少要80元.20、(1)y=x2+3x;(2)當PO+PC的值最小時,點P的坐標為(2,);(3)存在,具體見解析.【解析】
(1)由條件可求得拋物線的頂點坐標及A點坐標,利用待定系數法可求得拋物線解析式;(2)D與P重合時有最小值,求出點D的坐標即可;(3)存在,分別根據①AC為對角線,②AC為邊,兩種情況,分別求解即可.【詳解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經過O、A兩點,且頂點在BC邊上,∴拋物線頂點坐標為(2,3),∴可設拋物線解析式為y=a(x﹣2)2+3,把A點坐標代入可得0=a(4﹣2)2+3,解得a=,∴拋物線解析式為y=(x﹣2)2+3,即y=x2+3x;(2)∵點P在拋物線對稱軸上,∴PA=PO,∴PO+PC=PA+PC.∴當點P與點D重合時,PA+PC=AC;當點P不與點D重合時,PA+PC>AC;∴當點P與點D重合時,PO+PC的值最小,設直線AC的解析式為y=kx+b,根據題意,得解得∴直線AC的解析式為,當x=2時,,∴當PO+PC的值最小時,點P的坐標為(2,);(3)存在.①AC為對角線,當四邊形AQCP為平行四邊形,點Q為拋物線的頂點,即Q(2,3),則P(2,0);②AC為邊,當四邊形AQPC為平行四邊形,點C向右平移2個單位得到P,則點A向右平移2個單位得到點Q,則Q點的橫坐標為6,當x=6時,,此時Q(6,?9),則點A(4,0)向右平移2個單位,向下平移9個單位得到點Q,所以點C(0,3)向右平移2個單位,向下平移9個單位得到點P,則P(2,?6);當四邊形APQC為平行四邊形,點A向左平移2個單位得到P,則點C向左平移2個單位得到點Q,則Q點的橫坐標為?2,當x=?2時,,此時Q(?2,?9),則點C(0,3)向左平移2個單位,向下平移12個單位得到點Q,所以點A(4,0)向左平移2個單位,向下平移12個單位得到點P,則P(2,?12);綜上所述,P(2,0),Q(2,3)或P(2,?6),Q(6,?9)或P(2,?12),Q(?2,?9).【點睛】二次函數的綜合應用,涉及矩形的性質、待定系數法、平行四邊形的性質、方程思想及分類討論思想等知識.21、(1)直線的解析式為:.(2)平移的時間為5秒.【解析】
(1)求直線的解析式,可以先求出A、C兩點的坐標,就可以根據待定系數法求出函數的解析式.(2)設⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1.在直角△O1O3D1中,根據勾股定理,就可以求出O1D1,進而求出D1D的長,得到平移的時間.【詳解】(1)由題意得,∴點坐標為.∵在中,,,∴點的坐標為.設直線的解析式為,由過、兩點,得,解得,∴直線的解析式為:.(2)如圖,設平移秒后到處與第一次外切于點,與軸相切于點,連接,.則,∵軸,∴,在中,.∵,∴,∴(秒),∴平移的時間為5秒.【點睛】本題綜合了待定系數法求函數解析式,以及圓的位置關系,其中兩圓相切時的輔助線的作法是經常用到的.22、(1)3;(2);(3)【解析】
設塔的頂層共有盞燈,根據題意列出方程,進行解答即可.參照題目中的解題方法進行計算即可.由題意求得數列的每一項,及前n項和Sn=2n+1-2-n,及項數,由題意可知:2n+1為2的整數冪.只需將-2-n消去即可,分別分別即可求得N的值【詳解】設塔的頂層共有盞燈,由題意得.解得,頂層共有盞燈.設,,即:.即由題意可知:20第一項,20,21第二項,20,21,22第三項,…20,21,22…,2n?1第n項,根據等比數列前n項和公式,求得每項和分別為:每項含有的項數為:1,2,3,…,n,總共的項數為所有項數的和為由題意可知:為2的整數冪,只需將?2?n消去即可,則①1+2+(?2?n)=0,解得:n=1,總共有,不滿足N>10,②1+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 12做個小導游教學設計-2023-2024學年科學二年級下冊冀人版
- 2023七年級生物下冊 第四單元 生物圈中的人 第二章 人體的營養第三節 關注合理營養與食品安全教學設計 (新版)新人教版
- 2023一年級數學上冊 七 加與減(二)第3課時 搭積木教學設計 北師大版
- 2024-2025學年高中歷史 第二單元 工業文明的崛起和對中國的沖擊 第9課 改變世界的工業革命教學教學設計 岳麓版必修2
- 七年級道德與法治上冊 第三單元 師長情誼 第六課 師生之間 第一框 走近老師教學設計 新人教版
- 2023三年級英語上冊 Unit 4 Family Again,Please教學設計 冀教版(三起)
- 2024六年級英語上冊 Unit 1 How can I get there課時5 Read and write教學設計 人教PEP
- 自己在家安全教育
- Unit 3 Section B 2a~2c 教學設計2023-2024學年人教版英語七年級下冊
- 《盧溝謠》(教學設計)-2024-2025學年五年級上冊人教版(2012)音樂
- 《中華人民共和國學前教育法》專題培訓
- 2024年微生物在化妝品中的作用及其重要性
- 放射科報告質量問題整改措施
- 黃芪苗收購合同
- 焦慮癥課件完整版
- 移動機器人機械臂的結構設計論文
- 手術患者圍手術期的管理
- 陽光體育與我同行
- 2024年江蘇省南通市國家保安員資格考試題庫國編版
- 激光焊接工藝培訓教材課件
- GB/T 4706.32-2024家用和類似用途電器的安全第32部分:熱泵、空調器和除濕機的特殊要求
評論
0/150
提交評論