




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知x,y滿足不等式組,則點所在區域的面積是()A.1 B.2 C. D.2.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.3.執行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.4.已知,則,不可能滿足的關系是()A. B. C. D.5.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.86.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)7.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.88.執行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.9.已知實數,滿足,則的最大值等于()A.2 B. C.4 D.810.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.11.關于函數,下列說法正確的是()A.函數的定義域為B.函數一個遞增區間為C.函數的圖像關于直線對稱D.將函數圖像向左平移個單位可得函數的圖像12.設集合,,若,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復數(為虛數單位),則的共軛復數是_____,_____.14.某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________.15.已知點P是直線y=x+1上的動點,點Q是拋物線y=x2上的動點.設點M為線段PQ的中點,O為原點,則16.,則f(f(2))的值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,∥,,點分別為的中點.(1)證明:∥面;(2)若,且,面面,求二面角的余弦值.18.(12分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數學教師為了調查高三學生數學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數學時間不少于5小時的有19人,余下的人中,在檢測考試中數學平均成績不足120分的占,統計成績后得到如下列聯表:分數不少于120分分數不足120分合計線上學習時間不少于5小時419線上學習時間不足5小時合計45(1)請完成上面列聯表;并判斷是否有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”;(2)①按照分層抽樣的方法,在上述樣本中從分數不少于120分和分數不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數是,求的分布列(概率用組合數算式表示);②若將頻率視為概率,從全校高三該次檢測數學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)19.(12分)已知首項為2的數列滿足.(1)證明:數列是等差數列.(2)令,求數列的前項和.20.(12分)如圖所示,在三棱錐中,,,,點為中點.(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值.21.(12分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點M在棱PA上運動,當直線BM與平面PAC所成的角最大時,求直線MA與平面MBC所成角的正弦值.22.(10分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求的直角坐標方程和的直角坐標;(2)設與交于,兩點,線段的中點為,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
畫出不等式表示的平面區域,計算面積即可.【詳解】不等式表示的平面區域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點睛】本題考查不等式組表示的平面區域面積的求法,考查數形結合思想和運算能力,屬于常考題.2、B【解析】
由題中垂直關系,可得漸近線的方程,結合,構造齊次關系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點睛】本題考查了雙曲線的漸近線和離心率,考查了學生綜合分析,概念理解,數學運算的能力,屬于中檔題.3、C【解析】
框圖的功能是求等比數列的和,直到和不滿足給定的值時,退出循環,輸出n.【詳解】第一次循環:;第二次循環:;第三次循環:;第四次循環:;此時滿足輸出結果,故.故選:C.【點睛】本題考查程序框圖的應用,建議數據比較小時,可以一步一步的書寫,防止錯誤,是一道容易題.4、C【解析】
根據即可得出,,根據,,即可判斷出結果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數式和對數式的互化,對數的運算,以及基本不等式:和不等式的應用,屬于中檔題5、C【解析】
設拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經過拋物線的焦點,,是與的交點,又軸,∴可設點坐標為,代入,解得,又∵點在準線上,設過點的的垂線與交于點,,∴.故應選C.【點睛】本題考查拋物線的性質,解題時只要設出拋物線的標準方程,就能得出點坐標,從而求得參數的值.本題難度一般.6、B【解析】M=y|y=N==x|∴M∩N=(1,2).故選B.7、B【解析】
建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數形結合的數學思想方法,屬于難題.8、A【解析】
根據輸入的值大小關系,代入程序框圖即可求解.【詳解】輸入,,因為,所以由程序框圖知,輸出的值為.故選:A【點睛】本題考查了對數式大小比較,條件程序框圖的簡單應用,屬于基礎題.9、D【解析】
畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【點睛】本小題主要考查根據可行域求非線性目標函數的最值,考查數形結合的數學思想方法,屬于基礎題.10、A【解析】
設為、的夾角,根據題意求得,然后建立平面直角坐標系,設,,,根據平面向量數量積的坐標運算得出點的軌跡方程,將和轉化為圓上的點到定點距離,利用數形結合思想可得出結果.【詳解】由已知可得,則,,,建立平面直角坐標系,設,,,由,可得,即,化簡得點的軌跡方程為,則,則轉化為圓上的點與點的距離,,,,轉化為圓上的點與點的距離,,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標化,將問題轉化為圓上的點到定點距離的最值問題是解答的關鍵,考查化歸與轉化思想與數形結合思想的應用,屬于中等題.11、B【解析】
化簡到,根據定義域排除,計算單調性知正確,得到答案.【詳解】,故函數的定義域為,故錯誤;當時,,函數單調遞增,故正確;當,關于的對稱的直線為不在定義域內,故錯誤.平移得到的函數定義域為,故不可能為,錯誤.故選:.【點睛】本題考查了三角恒等變換,三角函數單調性,定義域,對稱,三角函數平移,意在考查學生的綜合應用能力.12、C【解析】
由得出,利用集合的包含關系可得出實數的取值范圍.【詳解】,且,,.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用集合的包含關系求參數,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
直接利用復數的乘法運算化簡,從而得到復數的共軛復數和的模.【詳解】,則復數的共軛復數為,且.故答案為:;.【點睛】本題考查了復數代數形式的乘除運算,考查了復數的基本概念,是基礎的計算題.14、3【解析】由已知中的三視圖可得該幾何體是一個以直角梯形為底面,梯形上下邊長為和,高為,如圖所示,平面,所以底面積為,幾何體的高為,所以其體積為.點睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據三視圖的規則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線.在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結合側視圖進行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數量關系,利用相應體積公式求解.15、3【解析】
過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,當直線相切時距離最小,計算得到答案.【詳解】如圖所示:過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,y=x2,則y'=2x=1,x=1點M為線段PQ的中點,故M在直線y=x+38時距離最小,故故答案為:32【點睛】本題考查了拋物線中距離的最值問題,轉化為切線問題是解題的關鍵.16、1【解析】
先求f(1),再根據f(1)值所在區間求f(f(1)).【詳解】由題意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案為:1.【點睛】本題考查分段函數求值,考查對應性以及基本求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)根據題意,連接交于,連接,利用三角形全等得,進而可得結論;(2)建立空間直角坐標系,利用向量求得平面的法向量,進而可得二面角的余弦值.【詳解】(1)證明:連接交于,連接,,≌,且,面面,面,(2)取中點,連,.由,面面面,又由,以分別為軸建立如圖所示空間直角坐標系,設,則,,,,,,為面的一個法向量,設面的法向量為,依題意,即,令,解得,所以,平面的法向量,,又因二面角為銳角,故二面角的余弦值為.【點睛】本題考查直線與平面平行的證明,考查二面角的余弦值的求法,解題時要認真審題,注意中位線和向量法的合理運用,屬于基礎題.18、(1)填表見解析;有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”(2)①詳見解析②期望;方差【解析】
(1)完成列聯表,代入數據即可判斷;(2)利用分層抽樣可得的取值,進而得到概率,列出分布列;根據分析知,計算出期望與方差.【詳解】(1)分數不少于120分分數不足120分合計線上學習時間不少于5小時15419線上學習時間不足5小時101626合計252045有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”.(2)①由分層抽樣知,需要從不足120分的學生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學生中隨機抽取1人,此人每周上線時間不少于5小時的概率為,設從全校不少于120分的學生中隨機抽取20人,這些人中每周線上學習時間不少于5小時的人數為,則,故,.【點睛】本題考查了獨立性檢驗與離散型隨機變量的分布列、數學期望與方差的計算問題,屬于基礎題.19、(1)見解析;(2)【解析】
(1)由原式可得,等式兩端同時除以,可得到,即可證明結論;(2)由(1)可求得的表達式,進而可求得的表達式,然后求出的前項和即可.【詳解】(1)證明:因為,所以,所以,從而,因為,所以,故數列是首項為1,公差為1的等差數列.(2)由(1)可知,則,因為,所以,則.【點睛】本題考查了等差數列的證明,考查了等差數列及等比數列的前項和公式的應用,考查了學生的計算求解能力,屬于中檔題.20、(1)答案見解析.(2)【解析】
(1)通過證明平面,證得,證得,由此證得平面,進而證得平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】(1)因為,所以平面,因為平面,所以.因為,點為中點,所以.因為,所以平面.因為平面,所以平面平面.(2)以點為坐標原點,直線分別為軸,軸,過點與平面垂直的直線為軸,建立空間直角坐標系,則,,,,,,,,,,設平面的一個法向量,則即取,則,,所以,設平面的一個法向量,則即取,則,,所以,設平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)見解析(2)【解析】
(1)設的中點為,連接.由展開圖可知,,.為的中點,則有,根據勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直線與平面所成的角,且,最大即為最短時,即是的中點建立空間直角坐標系,求出與平面的法向量利用公式即可求得結果.【詳解】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深圳房屋轉讓協議書
- 委托處理硫酸協議書
- 商業店鋪退租協議書
- 入股合伙協議書退出
- 兄弟購房協議書范本
- 旅游包車協議書范本
- 籃球安全協議書模板
- 勞務派遣退出協議書
- 退稅分攤協議書范本
- 仲裁協議書打印幾份
- XXX市電子政務外網數字化監控及安全監測平臺建設方案
- 《中國藥物性肝損傷診治指南(2024年版)》解讀
- 浙江省寧波市2024年中考二模英語試卷(含答案)
- 《自然教育》課件-自然解說
- 2024年瓦斯防突工技能競賽理論考試題庫(含答案)
- 2024國考公務員考試題及行測
- 2023-2024學年河南省焦作市八年級(下)期末數學試卷(含答案)
- GB/T 15597.2-2024塑料聚甲基丙烯酸甲酯(PMMA)模塑和擠出材料第2部分:試樣制備和性能測定
- 營運能力分析國外研究現狀
- 統編版四年級下冊語文第六單元 口語交際:朋友相處的秘訣 課件
- 西北政法大學課件模板
評論
0/150
提交評論