




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版高中數學必修1第一章知識點一、集合有關概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。2、集合中元素的三個特性:1.元素的確定性;2.元素的互異性;
3.元素的無序性
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-3>2的解集是{x∈R|x-3>2}或{x|x-3>2}4、集合的分類:(1)有限集
含有有限個元素的集合(2)無限集
含有無限個元素的集合(3)空集
不含任何元素的集合
例:
二、集合間的基本關系
三、集合的運算1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集與并集的性質:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)。
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。四、函數的有關概念1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.注意:如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;函數的定義域、值域要寫成集合或區間的形式.定義域補充能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零;(2)偶次方根的被開方數不小于零;(3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1.(5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零(6)實際問題中的函數的定義域還要保證實際問題有意義.2.構成函數的三要素:定義域、對應關系和值域注意:(1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致(兩點必須同時具備)(見課本21頁相關例2)值域補充(1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域.(2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。3.函數圖象知識歸納(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.集合C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A},圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。(2)畫法A、描點法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點P(x,y),最后用平滑的曲線將這些點連接起來.B、圖象變換法(請參考必修4三角函數)
常用變換方法有三種,即平移變換、伸縮變換和對稱變換(3)作用:1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。發現解題中的錯誤。4.了解區間的概念(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.5.什么叫做映射一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射。記作“f:A→B”給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象7.函數單調性(1)增函數設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量a,b,當a<b時,都有f(a)<f(b),那么就說f(x)在區間D上是增函數。區間D稱為y=f(x)的單調增區間(睇清楚課本單調區間的概念)(2)減函數設函數y=f(x)的定義域為I,如果對于區間D上的任意兩個自變量的值a,b,當a<b時,都有f(a)>f(b),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.注意:1函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;2必須是對于區間D內的任意兩個自變量a,b。(3)圖象的特點如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.(3).函數單調區間與單調性的判定方法(A)定義法:1任取a,b∈D,且a<b;2作差f(a)-f(b);3變形(通常是因式分解和配方);4定號(即判斷差f(a)-f(b)的正負);5下結論(指出函數f(x)在給定的區間D上的單調性).(B)圖象法(從圖象上看升降)_(C)復合函數的單調性復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關
注意:1、函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫成其并集.2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?8.函數的奇偶性
(1)偶函數
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
(2)奇函數
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.注意:1、函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。2、由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).3、具有奇偶性的函數的圖象的特征偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.總結:利用定義判斷函數奇偶性的格式步驟:1首先確定函數的定義域,并判斷其定義域是否關于原點對稱;2確定f(-x)與f(x)的關系;3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.注意:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定;(2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數的圖象判定.9、函數的解析表達式
(1)函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.(2)求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)10.函數最大(小)值(定義見課本)
(1)利用二次函數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流主管模擬面試題及答案
- 2024高中化學第五章第二三節應用廣泛的高分子材料功能高分子材料教案新人教版選修5
- 系統架構設計師考試的知識點結構優化試題及答案
- 育嬰師考試模擬題匯編試題及答案
- 藥劑類考試全面提升試題及答案
- 激光技術的行業創新與實施試題及答案
- 2025版高考化學新增分大一輪復習第4章專題突破6綠色化學與環境保護精講義+優習題含解析魯科版
- 2025版高中數學第三章數系的擴充與復數的引入3.1.2復數的幾何意義練習含解析新人教A版選修2-2
- 2025年陜西省建筑安全員B證考試題庫
- 備考心態2024西醫臨床試題及答案
- 知識圖譜課件
- Taboo and Euphemism 禁忌語和委婉語課件
- 內科體檢操作課件
- 薪酬管理第6版第9章課件
- 機械原理課程設計-自動蓋章機
- 高中歷史選修二 第12課 水陸交通的變遷 課件(51張)
- JJF(紡織)062-2010 電子式織物強力機校準規范-(高清現行)
- 最新北師大版小學六年級數學下冊第二次月考(3~4單元)檢測試卷附答案
- 《通過感官來發現》PPT
- 非計劃再次手術管理制及流程
- 《口腔檢查》PPT課件(人衛版)
評論
0/150
提交評論