




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題3分,共30分)1.如圖所示,下列條件中能單獨判斷△ABC∽△ACD的個數是()個.①∠ABC=∠ACD;②∠ADC=∠ACB;③=;④AC2=AD?ABA.1 B.2 C.3 D.42.下列條件中,一定能判斷兩個等腰三角形相似的是()A.都含有一個40°的內角 B.都含有一個50°的內角C.都含有一個60°的內角 D.都含有一個70°的內角3.如圖,過反比例函數y=(x>0)的圖象上一點A作AB⊥x軸于點B,連接AO,則S△AOB=()A.1 B.2 C.4 D.84.若與相似且對應中線之比為,則周長之比和面積比分別是()A., B., C., D.,5.二次函數的圖象的頂點坐標是()A. B. C. D.6.已知的三邊長分別為、、,且滿足,則的形狀是().A.等邊三角形 B.等腰三角形 C.等腰直角三角形 D.直角三角形7.若一元二次方程有兩個相等的實數根,則m的值是()A.2 B. C. D.8.如圖,一張矩形紙片ABCD的長,寬將紙片對折,折痕為EF,所得矩形AFED與矩形ABCD相似,則a:A.2:1 B.:1 C.3: D.3:29.若拋物線y=x2+ax+b與x軸兩個交點間的距離為4,稱此拋物線為定弦拋物線.已知某定弦拋物線的對稱軸為直線x=2,將此拋物線向左平移2個單位,再向上平移3個單位,得到的拋物線過點()A.(1,0) B.(1,8) C.(1,﹣1) D.(1,﹣6)10.如圖,一個幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側面積為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在邊長為2的菱形ABCD中,,點E、F分別在邊AB、BC上.將BEF沿著直線EF翻折,點B恰好與邊AD的中點G重合,則BE的長等于________.12.如圖,點B是反比例函數y=(x>0)的圖象上任意一點,AB∥x軸并交反比例函數y=﹣(x<0)的圖象于點A,以AB為邊作平行四邊形ABCD,其中C、D在x軸上,則平行四邊形ABCD的面積為_____.13.若弧長為4π的扇形的圓心角為直角,則該扇形的半徑為.14.某人沿著有一定坡度的坡面前進了6米,此時他在垂直方向的距離上升了2米,則這個坡面的坡度為_____.15.若⊙P的半徑為5,圓心P的坐標為(﹣3,4),則平面直角坐標系的原點O與⊙P的位置關系是_____.16.分解因式:__________.17.如果兩個相似三角形的對應角平分線之比為2:5,較小三角形面積為8平方米,那么較大三角形的面積為_____________平方米.18.已知是一元二次方程的一個根,則的值是______.三、解答題(共66分)19.(10分)從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.如圖1,在中,是的完美分割線,且,則的度數是如圖2,在中,為角平分線,,求證:為的完美分割線.如圖2,中,是的完美分割線,且是以為底邊的等腰三角形,求完美分割線的長.20.(6分)“揚州漆器”名揚天下,某網店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數關系,如圖所示.(1)求與之間的函數關系式;(2)如果規定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?(3)該網店店主熱心公益事業,決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.21.(6分)(問題情境)(1)古希臘著名數學家歐幾里得在《幾何原本》提出了射影定理,又稱“歐幾里德定理”:在直角三角形中,斜邊上的高是兩條直角邊在斜邊射影的比例中項,每一條直角邊又是這條直角邊在斜邊上的射影和斜邊的比例中項.射影定理是數學圖形計算的重要定理.其符號語言是:如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,則:(1)AC2=AB·AD;(2)BC2=AB·BD;(3)CD2=AD·BD;請你證明定理中的結論(1)AC2=AB·AD.(結論運用)(2)如圖2,正方形ABCD的邊長為3,點O是對角線AC、BD的交點,點E在CD上,過點C作CF⊥BE,垂足為F,連接OF,①求證:△BOF∽△BED;②若,求OF的長.22.(8分)如圖,△ABC中,AC=BC,CD⊥AB于點D,四邊形DBCE是平行四邊形.求證:四邊形ADCE是矩形.23.(8分)已知關于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長.(1)如果x=﹣1是方程的根,試判斷△ABC的形狀,并說明理由;(2)如果方程有兩個相等的實數根,試判斷△ABC的形狀,并說明理由;(3)如果△ABC是等邊三角形,試求這個一元二次方程的根.24.(8分)如圖,一位籃球運動員在離籃圈水平距離4處跳起投籃,球運行的高度()與運行的水平距離()滿足解析式,當球運行的水平距離為1.5時,球離地面高度為2.2,球在空中達到最大高度后,準確落入籃圈內.已知籃圈中心離地面距離為2.35.(1)當球運行的水平距離為多少時,達到最大高度?最大高度為多少?(2)若該運動員身高1.8,這次跳投時,球在他頭頂上方3.25處出手,問球出手時,他跳離地面多高?25.(10分)如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.(1)求證:四邊形BCDE為菱形;(2)連接AC,若AC平分∠BAD,BC=1,求AC的長.26.(10分)黎托社區在創建全國衛生城市的活動中,隨機檢查了本社區部分住戶10月份某周內“垃圾分類”的實施情況,將他們繪制了兩幅不完整的統計圖(.小于5天;.5天;.6天;.7天).(1)扇形統計圖部分所對應的圓心角的度數是______.(2)12月份雨花區將舉行一場各社區之間“垃圾分類”知識搶答賽,黎托社區準備從甲、乙、丙、丁四戶家庭以抽簽的形式選取兩戶家庭參賽,求甲、丙兩戶家庭恰好被抽中的概率.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】由圖可知△ABC與△ACD中∠A為公共角,所以只要再找一組角相等,或一組對應邊成比例即可解答.【詳解】有三個①∠ABC=∠ACD,再加上∠A為公共角,可以根據有兩組角對應相等的兩個三角形相似來判定;②∠ADC=∠ACB,再加上∠A為公共角,可以根據有兩組角對應相等的兩個三角形相似來判定;③中∠A不是已知的比例線段的夾角,不正確④可以根據兩組對應邊的比相等且相應的夾角相等的兩個三角形相似來判定;故選C【點睛】本題考查相似三角形的判定定理,熟練掌握判定定理是解題的關鍵2、C【解析】試題解析:因為A,B,D給出的角可能是頂角也可能是底角,所以不對應,則不能判定兩個等腰三角形相似;故A,B,D錯誤;C.有一個的內角的等腰三角形是等邊三角形,所有的等邊三角形相似,故C正確.故選C.3、B【分析】利用反比例函數k的幾何意義判斷即可.【詳解】解:根據題意得:S△AOB=×4=2,故選:B.【點睛】本題考查了反比例函數系數k的幾何意義,關鍵是熟練掌握“在反比例函數的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|.”4、B【分析】直接根據相似三角形的性質進行解答即可.【詳解】解:與相似,且對應中線之比為,其相似比為,與周長之比為,與面積比為,故選:B.【點睛】本題考查的是相似三角形的性質,熟知相似三角形周長的比等于相似比,相似三角形的對應線段(對應中線、對應角平分線、對應邊上的高)的比也等于相似比,相似三角形面積比是相似比的平方是解答此題的關鍵.5、B【分析】根據二次函數的性質,用配方法求出二次函數頂點式,再得出頂點坐標即可.【詳解】解:∵拋物線
=(x+1)2+3
∴拋物線的頂點坐標是:(?1,3).
故選B.【點睛】此題主要考查了利用配方法求二次函數頂點式以及求頂點坐標,此題型是考查重點,應熟練掌握.6、D【分析】根據非負數性質求出a,b,c,再根據勾股定理逆定理解析分析.【詳解】因為所以a-5=0,b-12=0,13-c=0所以a=5,b=12,c=13因為52+122=132所以a2+b2=c2所以以的三邊長分別為、、的三角形是直角三角形.故選:D【點睛】考核知識點:勾股定理逆定理.根據非負數性質求出a,b,c是關鍵.7、D【分析】根據一元二次方程根的判別式,即可得到答案【詳解】解:∵一元二次方程有兩個相等的實數根,∴,解得:;故選擇:D.【點睛】本題考查了一元二次方程根的判別式,解題的關鍵是熟練掌握利用根的判別式求參數的值.8、B【分析】根據折疊性質得到AF=AB=a,再根據相似多邊形的性質得到,即,然后利用比例的性質計算即可.【詳解】解:∵矩形紙片對折,折痕為EF,
∴AF=AB=a,
∵矩形AFED與矩形ABCD相似,
∴,即,
∴a∶b=.
所以答案選B.【點睛】本題考查了相似多邊形的性質:相似多邊形對應邊的比叫做相似比.相似多邊形的對應角相等,對應邊的比相等.9、A【分析】根據定弦拋物線的定義結合其對稱軸,即可找出該拋物線的解析式,利用平移的“左加右減,上加下減”找出平移后新拋物線的解析式,再利用二次函數圖象上點的坐標特征即可找出結論.【詳解】∵某定弦拋物線的對稱軸為直線x=2,∴該定弦拋物線過點(0,0)、(2,0),∴該拋物線解析式為y=x(x﹣2)=x2﹣2x=(x﹣2)2﹣2.將此拋物線向左平移2個單位,再向上平移3個單位,得到新拋物線的解析式為y=(x﹣2+2)2﹣2+3=x2﹣2.當x=2時,y=x2﹣2=0,∴得到的新拋物線過點(2,0).故選:A.【點睛】本題考查了拋物線與x軸的交點、二次函數圖象上點的坐標特征、二次函數圖象與幾何變換以及二次函數的性質,根據定弦拋物線的定義結合其對稱軸,求出原拋物線的解析式是解題的關鍵.10、D【分析】這個幾何體的側面是以底面圓周長為長、圓柱體的高為寬的矩形,根據矩形的面積公式計算即可.【詳解】根據三視圖可得幾何體為圓柱,圓柱體的側面積=底面圓的周長圓柱體的高=故答案為:D.【點睛】本題考查了圓柱體的側面積問題,掌握矩形的面積公式是解題的關鍵.二、填空題(每小題3分,共24分)11、【分析】如圖,作GH⊥BA交BA的延長線于H,EF交BG于O.利用勾股定理求出MG,由此即可解決問題.【詳解】過點G作GM⊥AB交BA延長線于點M,則∠AMG=90°,∵G為AD的中點,∴AG=AD==1,∵四邊形ABCD是菱形,∴AB//CD,∴∠MAG=∠D=60°,∴∠AGM=30°,∴AM=AG=,∴MG=,設BE=x,則AE=2-x,∵EG=BE,∴EG=x,在Rt△EGM中,EG2=EM2+MG2,∴x2=(2-x+)2+,∴x=,故答案為.【點睛】本題考查了菱形的性質、軸對稱的性質等,正確添加輔助線構造直角三角形利用勾股定理進行解答是關鍵.12、1.【分析】設A的縱坐標是b,則B的縱坐標也是b,即可求得AB的橫坐標,則AB的長度即可求得,然后利用平行四邊形的面積公式即可求解【詳解】設A的縱坐標是b,則B的縱坐標也是b把y=b代入y=得,b=則x=,即B的橫坐標是同理可得:A的橫坐標是:則AB=-()=則S=×b=1.故答案為1【點睛】此題考查反比例函數系數k的幾何意義,解題關鍵在于設A的縱坐標為b13、1.【分析】根據扇形的弧長公式計算即可,【詳解】∵扇形的圓心角為90°,弧長為4π,∴,即4π=,則扇形的半徑r=1.故答案為1考點:弧長的計算.14、【分析】先利用勾股定理求出AC的長,再根據坡度的定義即可得.【詳解】由題意得:米,米,,在中,(米),則這個坡面的坡度為,故答案為:.【點睛】本題考查了勾股定理、坡度的定義,掌握理解坡度的定義是解題關鍵.15、點O在⊙P上【分析】由勾股定理等性質算出點與圓心的距離d,則d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內.【詳解】解:由勾股定理,得OP==5,d=r=5,故點O在⊙P上.故答案為點O在⊙P上.【點睛】此題考查點與圓的位置關系的判斷.解題關鍵在于要記住若半徑為r,點到圓心的距離為d,則有:當d>r時,點在圓外;當d=r時,點在圓上,當d<r時,點在圓內.16、【分析】提取公因式a進行分解即可.【詳解】解:a2?5a=a(a?5).故答案是:a(a?5).【點睛】本題考查了因式分解?提公因式法:如果一個多項式的各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法.17、1【分析】設較大三角形的面積為x平方米.根據相似三角形面積的比等于相似比的平方列出方程,然后求解即可.【詳解】設較大三角形的面積為x平方米.∵兩個相似三角形的對應角平分線之比為2:5,∴兩個相似三角形的相似比是2:5,∴兩個相似三角形的面積比是4:25,∴8:x=4:25,解得:x=1.故答案為:1.【點睛】本題考查了相似三角形的性質,相似三角形周長的比等于相似比、相似三角形面積的比等于相似比的平方、相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.18、0【分析】將代入方程中,可求出m的兩個解,然后根據一元二次方程的定義即可判斷m可取的值.【詳解】解:將代入一元二次方程中,得解得:∵是一元二次方程∴解得故m=0故答案為:0.【點睛】此題考查的是一元二次方程的定義和解,掌握一元二次方程的二次項系數不為0和解的定義是解決此題的關鍵.三、解答題(共66分)19、(1)88°;(2)詳見解析;(3)【分析】(1)是的完美分割線,且,得∠ACD=44°,∠BCD=44°,進而即可求解;(2)由,得,由平分,,得為等腰三角形,結合,即可得到結論;(3)由是的完美分割線,得從而得,設,列出方程,求出x的值,再根據,即可得到答.【詳解】(1)∵是的完美分割線,且,∴,∠A=∠ACD=44°,∴∠A=∠BCD=44°,∴.故答案是:88°;,,不是等腰三角形,平分,,,為等腰三角形.,,,是的完美分割線.∵是以為底邊的等腰三角形,∴,∵是的完美分割線,∴,設,則,,,.【點睛】本題主要考查等腰三角形的性質與相似三角形的判定和性質定理,掌握相似三角形的性質定理,是解題的關鍵.20、(1);(2)單價為46元時,利潤最大為3840元.(3)單價的范圍是45元到55元.【分析】(1)可用待定系數法來確定y與x之間的函數關系式;(2)根據利潤=銷售量×單件的利潤,然后將(1)中的函數式代入其中,求出利潤和銷售單件之間的關系式,然后根據其性質來判斷出最大利潤;(3)首先得出w與x的函數關系式,進而利用所獲利潤等于3600元時,對應x的值,根據增減性,求出x的取值范圍.【詳解】(1)由題意得:.故y與x之間的函數關系式為:y=-10x+700,(2)由題意,得-10x+700≥240,解得x≤46,設利潤為w=(x-30)?y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50時,w隨x的增大而增大,∴x=46時,w大=-10(46-50)2+4000=3840,答:當銷售單價為46元時,每天獲取的利潤最大,最大利潤是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如圖所示,由圖象得:當45≤x≤55時,捐款后每天剩余利潤不低于3600元.【點睛】此題主要考查了二次函數的應用、一次函數的應用和一元二次方程的應用,利用函數增減性得出最值是解題關鍵,能從實際問題中抽象出二次函數模型是解答本題的重點和難點.21、(1)見解析;(2)①見解析;②【分析】(1)證明△ACD∽△ABC,即可得證;
(2)①BC2=BO?BD,BC2=BF?BE,即BO?BD=BF?BE,即可求解;②在Rt△BCE中,BC=3,BE=,利用△BOF∽△BED,即可求解.【詳解】解:(1)證明:如圖1,∵CD⊥AB,
∴∠BDC=90°,
而∠A=∠A,∠ACB=90°,
∴△ACD∽△ABC,
∴AC:AB=AD:AC,
∴AC2=AB·AD;
(2)①證明:如圖2,
∵四邊形ABCD為正方形,
∴OC⊥BO,∠BCD=90°,
∴BC2=BO?BD,
∵CF⊥BE,
∴BC2=BF?BE,
∴BO?BD=BF?BE,
即,而∠OBF=∠EBD,
∴△BOF∽△BED;
②∵在Rt△BCE中,BC=3,BE=,∴CE=,∴DE=BC-CE=2;
在Rt△OBC中,OB=BC=,∵△BOF∽△BED,∴,即,∴OF=.【點睛】本題為三角形相似綜合題,涉及到勾股定理運用、正方形基本知識等,難點在于找到相似三角形,此類題目通常難度較大.22、見解析.【解析】根據等腰三角形的性質可知CD垂直平分AB,在根據平行四邊形的性質可知EC平行且等于AD,由矩形的判定即可證出四邊形ADCE是矩形.【詳解】證明:∵AC=BC,CD⊥AB∴∠ADC=90°,AD=BD∵在?DBCE中,EC∥BD,∴EC∥AD,EC=AD∴四邊形ADCE是平行四邊形又∵∠ADC=90°∴四邊形ADCE是矩形.【點睛】本題主要考查了等腰三角形三線合一的性質、平行四邊形的判定與性質,熟知矩形的判定是解題關鍵.23、(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=﹣1.【解析】試題分析:(1)直接將x=﹣1代入得出關于a,b的等式,進而得出a=b,即可判斷△ABC的形狀;(2)利用根的判別式進而得出關于a,b,c的等式,進而判斷△ABC的形狀;(3)利用△ABC是等邊三角形,則a=b=c,進而代入方程求出即可.試題解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有兩個相等的實數根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 木工藝品的創新設計理念考核試卷
- 租賃業務的服務質量評價與改進考核試卷
- 森林公園生態旅游市場分析與預測考核試卷
- 涂料在醫療器械涂裝的應用與要求考核試卷
- 魯濱遜漂流記讀后感初二語文作文
- 塑料鞋消費趨勢與流行元素考核試卷
- 滑動軸承的疲勞裂紋擴展研究考核試卷
- 建筑消防工程安全評估考核試卷
- 水果種植園農業產業鏈優化考核試卷
- 無線家庭視聽解決方案考核試卷
- 高三下學期《積極調整成為高考黑馬!》主題班會課件
- 委托代簽工程合同協議
- 無線網絡優化技術探討試題及答案
- 筆算加法(課件)-一年級下冊數學人教版
- 魯濱遜漂流記人物性格塑造與成長歷程:八年級語文教案
- 2025年河北省唐山市中考一模歷史試題(原卷版+解析版)
- 2025年鄭州信息科技職業學院單招職業適應性測試題庫附答案
- 2024年廣東公需科目答案
- DZ∕T 0215-2020 礦產地質勘查規范 煤(正式版)
- DB32∕T 4073-2021 建筑施工承插型盤扣式鋼管支架安全技術規程
- 離婚登記申請受理回執單(民法典版)
評論
0/150
提交評論