2023年山東省濰坊實驗中學高三下學期聯合考試數學試題(含答案解析)_第1頁
2023年山東省濰坊實驗中學高三下學期聯合考試數學試題(含答案解析)_第2頁
2023年山東省濰坊實驗中學高三下學期聯合考試數學試題(含答案解析)_第3頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為虛數單位,則的虛部為()A. B. C. D.2.函數在的圖象大致為A. B.C. D.3.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標為(c,0),點A是第一象限內雙曲線漸近線上的一點,O為坐標原點,滿足|OA|=A.2 B.2 C.2334.的內角的對邊分別為,若,則內角()A. B. C. D.5.將4名大學生分配到3個鄉鎮去當村官,每個鄉鎮至少一名,則不同的分配方案種數是()A.18種 B.36種 C.54種 D.72種6.已知函數的圖象的一條對稱軸為,將函數的圖象向右平行移動個單位長度后得到函數圖象,則函數的解析式為()A. B.C. D.7.已知函數,若方程恰有兩個不同實根,則正數m的取值范圍為()A. B.C. D.8.已知函數,若所有點,所構成的平面區域面積為,則()A. B. C.1 D.9.過直線上一點作圓的兩條切線,,,為切點,當直線,關于直線對稱時,()A. B. C. D.10.現有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.11.若數列為等差數列,且滿足,為數列的前項和,則()A. B. C. D.12.直線與圓的位置關系是()A.相交 B.相切 C.相離 D.相交或相切二、填空題:本題共4小題,每小題5分,共20分。13.設雙曲線的左焦點為,過點且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點若,則的離心率為________.14.實數,滿足約束條件,則的最大值為__________.15.已知向量與的夾角為,||=||=1,且⊥(λ),則實數_____.16.為激發學生團結協作,敢于拼搏,不言放棄的精神,某校高三5個班進行班級間的拔河比賽.每兩班之間只比賽1場,目前(—)班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場.則目前(五)班已經參加比賽的場次為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)一酒企為擴大生產規模,決定新建一個底面為長方形的室內發酵館,發酵館內有一個無蓋長方體發酵池,其底面為長方形(如圖所示),其中.結合現有的生產規模,設定修建的發酵池容積為450米,深2米.若池底和池壁每平方米的造價分別為200元和150元,發酵池造價總費用不超過65400元(1)求發酵池邊長的范圍;(2)在建發酵館時,發酵池的四周要分別留出兩條寬為4米和米的走道(為常數).問:發酵池的邊長如何設計,可使得發酵館占地面積最小.18.(12分)已知橢圓與拋物線有共同的焦點,且離心率為,設分別是為橢圓的上下頂點(1)求橢圓的方程;(2)過點與軸不垂直的直線與橢圓交于不同的兩點,當弦的中點落在四邊形內(含邊界)時,求直線的斜率的取值范圍.19.(12分)已知函數,曲線在點處的切線方程為.(1)求,的值;(2)證明函數存在唯一的極大值點,且.20.(12分)已知等差數列an,和等比數列b(I)求數列{an}(II)求數列n2an?a21.(12分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.22.(10分)已知向量,.(1)求的最小正周期;(2)若的內角的對邊分別為,且,求的面積.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【答案解析】

利用復數的運算法則計算即可.【題目詳解】,故虛部為.故選:C.【答案點睛】本題考查復數的運算以及復數的概念,注意復數的虛部為,不是,本題為基礎題,也是易錯題.2.A【答案解析】

因為,所以排除C、D.當從負方向趨近于0時,,可得.故選A.3.C【答案解析】

計算得到Ac,bca【題目詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,Fc,0,故Mc,故選:C.【答案點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.4.C【答案解析】

由正弦定理化邊為角,由三角函數恒等變換可得.【題目詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【答案點睛】本題考查正弦定理,考查兩角和的正弦公式和誘導公式,掌握正弦定理的邊角互化是解題關鍵.5.B【答案解析】

把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉鎮即得.【題目詳解】把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉鎮,則不同的分配方案有種.故選:.【答案點睛】本題考查排列組合,屬于基礎題.6.C【答案解析】

根據輔助角公式化簡三角函數式,結合為函數的一條對稱軸可求得,代入輔助角公式得的解析式.根據三角函數圖像平移變換,即可求得函數的解析式.【題目詳解】函數,由輔助角公式化簡可得,因為為函數圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數的圖象向右平行移動個單位長度可得,則,故選:C.【答案點睛】本題考查了輔助角化簡三角函數式的應用,三角函數對稱軸的應用,三角函數圖像平移變換的應用,屬于中檔題.7.D【答案解析】

當時,函數周期為,畫出函數圖像,如圖所示,方程兩個不同實根,即函數和有圖像兩個交點,計算,,根據圖像得到答案.【題目詳解】當時,,故函數周期為,畫出函數圖像,如圖所示:方程,即,即函數和有兩個交點.,,故,,,,.根據圖像知:.故選:.【答案點睛】本題考查了函數的零點問題,確定函數周期畫出函數圖像是解題的關鍵.8.D【答案解析】

依題意,可得,在上單調遞增,于是可得在上的值域為,繼而可得,解之即可.【題目詳解】解:,因為,,所以,在上單調遞增,則在上的值域為,因為所有點所構成的平面區域面積為,所以,解得,故選:D.【答案點睛】本題考查利用導數研究函數的單調性,理解題意,得到是關鍵,考查運算能力,屬于中檔題.9.C【答案解析】

判斷圓心與直線的關系,確定直線,關于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質求出,得,從而得.【題目詳解】如圖,設圓的圓心為,半徑為,點不在直線上,要滿足直線,關于直線對稱,則必垂直于直線,∴,設,則,,∴,.故選:C.【答案點睛】本題考查直線與圓的位置關系,考查直線的對稱性,解題關鍵是由圓的兩條切線關于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.10.B【答案解析】

求得基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,利用古典概型及其概率的計算公式,即可求解.【題目詳解】由題意,現有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【答案點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數和所求事件所包含的基本事件的個數,利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.11.B【答案解析】

利用等差數列性質,若,則求出,再利用等差數列前項和公式得【題目詳解】解:因為,由等差數列性質,若,則得,.為數列的前項和,則.故選:.【答案點睛】本題考查等差數列性質與等差數列前項和.(1)如果為等差數列,若,則.(2)要注意等差數列前項和公式的靈活應用,如.12.D【答案解析】

由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結論.【題目詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【答案點睛】本題主要考查直線與圓的位置關系,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

設直線的方程為,與聯立得到A點坐標,由得,,代入可得,即得解.【題目詳解】由題意,直線的方程為,與聯立得,,由得,,從而,即,從而離心率.故答案為:【答案點睛】本題考查了雙曲線的離心率,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.14.10【答案解析】

畫出可行域,根據目標函數截距可求.【題目詳解】解:作出可行域如下:由得,平移直線,當經過點時,截距最小,最大解得的最大值為10故答案為:10【答案點睛】考查可行域的畫法及目標函數最大值的求法,基礎題.15.1【答案解析】

根據條件即可得出,由即可得出,進行數量積的運算即可求出λ.【題目詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【答案點睛】考查向量數量積的運算及計算公式,以及向量垂直的充要條件.16.2【答案解析】

根據比賽場次,分析,畫出圖象,計算結果.【題目詳解】畫圖所示,可知目前(五)班已經賽了2場.故答案為:2【答案點睛】本題考查推理,計數原理的圖形表示,意在考查數形結合分析問題的能力,屬于基礎題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)當時,,米時,發酵館的占地面積最小;當時,時,發酵館的占地面積最小;當時,米時,發酵館的占地面積最小.【答案解析】

(1)設米,總費用為,解即可得解;(2)結合(1)可得占地面積結合導函數分類討論即可求得最值.【題目詳解】(1)由題意知:矩形面積米,設米,則米,由題意知:,得,設總費用為,則,解得:,又,故,所以發酵池邊長的范圍是不小于15米,且不超過25米;(2)設發酵館的占地面積為由(1)知:,①時,,在上遞增,則,即米時,發酵館的占地面積最小;②時,,在上遞減,則,即米時,發酵館的占地面積最小;③時,時,,遞減;時,遞增,因此,即時,發酵館的占地面積最小;綜上所述:當時,,米時,發酵館的占地面積最小;當時,時,發酵館的占地面積最小;當時,米時,發酵館的占地面積最小.【答案點睛】此題考查函數模型的應用,關鍵在于根據題意恰當地建立模型,利用函數性質討論最值取得的情況.18.(1)(2)或【答案解析】

(1)由已知條件得到方程組,解得即可;(2)由題意得直線的斜率存在,設直線方程為,聯立直線與橢圓方程,消元、列出韋達定理,由得到的范圍,設弦中點坐標為則,所以在軸上方,只需位于內(含邊界)就可以,即滿足,得到不等式組,解得即可;【題目詳解】解:(1)由已知橢圓右焦點坐標為,離心率為,,,所以橢圓的標準方程為;(2)由題意得直線的斜率存在,設直線方程為聯立,消元整理得,,由,解得設弦中點坐標為,所以在軸上方,只需位于內(含邊界)就可以,即滿足,即,解得或【答案點睛】本題考查了橢圓的定義標準方程及其性質,直線與橢圓的綜合應用,考查了推理能力與計算能力,屬于中檔題.19.(1)(2)證明見解析【答案解析】

(1)求導,可得(1),(1),結合已知切線方程即可求得,的值;(2)利用導數可得,,再構造新函數,利用導數求其最值即可得證.【題目詳解】(1)函數的定義域為,,則(1),(1),故曲線在點,(1)處的切線方程為,又曲線在點,(1)處的切線方程為,,;(2)證明:由(1)知,,則,令,則,易知在單調遞減,又,(1),故存在,使得,且當時,,單調遞增,當,時,,單調遞減,由于,(1),(2),故存在,使得,且當時,,,單調遞增,當,時,,,單調遞減,故函數存在唯一的極大值點,且,即,則,令,則,故在上單調遞增,由于,故(2),即,.【答案點睛】本題考查導數的幾何意義以及利用導數研究函數的單調性,極值及最值,考查推理論證能力,屬于中檔題.20.(I)an=2n-1,bn=【答案解析】

(I)直接利用等差數列,等比數列公式聯立方程計算得到答案.(II)n2【題目詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【答案點睛】本題考查了等差數列,等比數列,裂項求和,意在考查學生對于數列公式方法的綜合應用.21.(1),;(2)見解析.【答案解析】

(1)將曲線的極坐標方程變形為,再由可將曲線的極坐標方程化為直角坐標方程,將直線的方程與曲線的方程聯立,求出點、的坐標,即可得出線段的中點的坐標;(2)求得,寫出直線的參數方程,將直線的參數方程與曲線的普通方程聯立,利用韋達定理求得的值,進而可得出結論.【題目詳解】(1)曲線的極坐標方程可化為,即,將代入曲線的方程得,所以,曲線的直角坐標方程為.將直線的極坐標方程化為普通方程得,聯立,得或,則點、,因此,線段的中點為;(2)由(1)得,,易知的垂直平分線的參數方程為(為參數),代入的普通方程得,,因此,.【答案點睛】本題考查曲線的極坐標方程與普通方程之間的轉化,同時也考查了直線參數幾何意

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論