2022年江西省上饒市婺源縣中考數學仿真試卷含解析_第1頁
2022年江西省上饒市婺源縣中考數學仿真試卷含解析_第2頁
2022年江西省上饒市婺源縣中考數學仿真試卷含解析_第3頁
2022年江西省上饒市婺源縣中考數學仿真試卷含解析_第4頁
2022年江西省上饒市婺源縣中考數學仿真試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.2018的相反數是()A. B.2018 C.-2018 D.2.下列“數字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個3.方程x2﹣4x+5=0根的情況是()A.有兩個不相等的實數根 B.有兩個相等的實數根C.有一個實數根 D.沒有實數根4.如圖,在中,E為邊CD上一點,將沿AE折疊至處,與CE交于點F,若,,則的大小為()A.20° B.30° C.36° D.40°5.已知A(x1,y1),B(x2,y2)是反比例函數y=kx(k≠0)圖象上的兩個點,當x1<x2<0時,y1>y2A.第一象限B.第二象限C.第三象限D.第四象限6.若x﹣2y+1=0,則2x÷4y×8等于()A.1 B.4 C.8 D.﹣167.如圖,在△ABC中,EF∥BC,,S四邊形BCFE=8,則S△ABC=()A.9 B.10 C.12 D.138.已知關于x的方程x2﹣4x+c+1=0有兩個相等的實數根,則常數c的值為(

)A.﹣1 B.0 C.1 D.39.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.10.某種植基地2016年蔬菜產量為80噸,預計2018年蔬菜產量達到100噸,求蔬菜產量的年平均增長率,設蔬菜產量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100二、填空題(共7小題,每小題3分,滿分21分)11.已知三角形兩邊的長分別為1、5,第三邊長為整數,則第三邊的長為_____.12.在平面直角坐標系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數y=x的圖象被⊙P截得的弦AB的長為,則a的值是_____.13.已知一個多邊形的每一個內角都等于108°,則這個多邊形的邊數是.14.如圖,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分線交BC于點D,AC的垂直平分線交BC于點E,則∠DAE=______.15.如圖,的頂點落在兩條平行線上,點D、E、F分別是三邊中點,平行線間的距離是8,,移動點A,當時,EF的長度是______.16.某校為了解學生最喜歡的球類運動情況,隨機選取該校部分學生進行調查,要求每名學生只寫一類最喜歡的球類運動,以下是根據調查結果繪制的統計圖表的一部分那么,其中最喜歡足球的學生數占被調查總人數的百分比為____________%17.如圖,在平面直角坐標系中,點P的坐標為(0,4),直線y=x-3與x軸、y軸分別交于點A、B,點M是直線AB上的一個動點,則PM的最小值為________.三、解答題(共7小題,滿分69分)18.(10分)已知拋物線經過點,.把拋物線與線段圍成的封閉圖形記作.(1)求此拋物線的解析式;(2)點為圖形中的拋物線上一點,且點的橫坐標為,過點作軸,交線段于點.當為等腰直角三角形時,求的值;(3)點是直線上一點,且點的橫坐標為,以線段為邊作正方形,且使正方形與圖形在直線的同側,當,兩點中只有一個點在圖形的內部時,請直接寫出的取值范圍.19.(5分)如圖,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圓,過點C作⊙O的切線交BA的延長線于點E,BD⊥CE于點D,連接DO交BC于點M.(1)求證:BC平分∠DBA;(2)若,求的值.20.(8分)我們知道,平面內互相垂直且有公共原點的兩條數軸構成平面直角坐標系,如果兩條數軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數軸構成的是平面斜坐標系,兩條數軸稱為斜坐標系的坐標軸,公共原點稱為斜坐標系的原點,如圖1,經過平面內一點P作坐標軸的平行線PM和PN,分別交x軸和y軸于點M,N.點M、N在x軸和y軸上所對應的數分別叫做P點的x坐標和y坐標,有序實數對(x,y)稱為點P的斜坐標,記為P(x,y).(1)如圖2,ω=45°,矩形OABC中的一邊OA在x軸上,BC與y軸交于點D,OA=2,OC=l.①點A、B、C在此斜坐標系內的坐標分別為A,B,C.②設點P(x,y)在經過O、B兩點的直線上,則y與x之間滿足的關系為.③設點Q(x,y)在經過A、D兩點的直線上,則y與x之間滿足的關系為.(2)若ω=120°,O為坐標原點.①如圖3,圓M與y軸相切原點O,被x軸截得的弦長OA=4,求圓M的半徑及圓心M的斜坐標.②如圖4,圓M的圓心斜坐標為M(2,2),若圓上恰有兩個點到y軸的距離為1,則圓M的半徑r的取值范圍是.21.(10分)已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點,AC∥OP,M是直徑AB上的動點,A與直線CM上的點連線距離的最小值為d,B與直線CM上的點連線距離的最小值為f.(1)求證:PC是⊙O的切線;(2)設OP=AC,求∠CPO的正弦值;(3)設AC=9,AB=15,求d+f的取值范圍.22.(10分)光華農機租賃公司共有50臺聯合收割機,其中甲型20臺,乙型30臺,先將這50臺聯合收割機派往A、B兩地區收割小麥,其中30臺派往A地區,20臺派往B地區.兩地區與該農機租賃公司商定的每天的租賃價格見表:每臺甲型收割機的租金每臺乙型收割機的租金A地區18001600B地區16001200(1)設派往A地區x臺乙型聯合收割機,租賃公司這50臺聯合收割機一天獲得的租金為y(元),求y與x間的函數關系式,并寫出x的取值范圍;(2)若使農機租賃公司這50臺聯合收割機一天獲得的租金總額不低于79600元,說明有多少種分配方案,并將各種方案設計出來;(3)如果要使這50臺聯合收割機每天獲得的租金最高,請你為光華農機租賃公司提一條合理化建議.23.(12分)如圖,四邊形ABCD中,AC平分∠DAB,AC2=AB?AD,∠ADC=90°,E為AB的中點.(1)求證:△ADC∽△ACB;(2)CE與AD有怎樣的位置關系?試說明理由;(3)若AD=4,AB=6,求的值.24.(14分)已知:如圖,在平面直角坐標系中,O為坐標原點,△OAB的頂點A、B的坐標分別是A(0,5),B(3,1),過點B畫BC⊥AB交直線y=-m(m>54)于點C,連結AC,以點A為圓心,AC為半徑畫弧交x軸負半軸于點D,連結AD(1)求證:△ABC≌△AOD.(2)設△ACD的面積為s,求s關于m的函數關系式.(3)若四邊形ABCD恰有一組對邊平行,求m的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】【分析】根據只有符號不同的兩個數互為相反數進行解答即可得.【詳解】2018與-2018只有符號不同,由相反數的定義可得2018的相反數是-2018,故選C.【點睛】本題考查了相反數的定義,熟練掌握相反數的定義是解題的關鍵.2、C【解析】

根據軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.3、D【解析】

解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程沒有實數根.4、C【解析】

由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,由三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴,由折疊的性質得:,,∴,,∴;故選C.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.5、B【解析】試題分析:當x1<x2<0時,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函數y=kx﹣k的圖象經過第一、三、四象限,所以不經過第二象限,故答案選B.考點:反比例函數圖象上點的坐標特征;一次函數圖象與系數的關系.6、B【解析】

先把原式化為2x÷22y×23的形式,再根據同底數冪的乘法及除法法則進行計算即可.【詳解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故選:B.【點睛】本題考查的是同底數冪的乘法及除法運算,根據題意把原式化為2x÷22y×23的形式是解答此題的關鍵.7、A【解析】

由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面積比等于相似比的平方,即可求得答案.【詳解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四邊形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故選A.8、D【解析】分析:由于方程x2﹣4x+c+1=0有兩個相等的實數根,所以?=b2﹣4ac=0,可得關于c的一元一次方程,然后解方程求出c的值.詳解:由題意得,(-4)2-4(c+1)=0,c=3.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.9、A【解析】

根據軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.10、A【解析】

利用增長后的量=增長前的量×(1+增長率),設平均每次增長的百分率為x,根據“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產量的年平均增長率為x,根據2016年蔬菜產量為80噸,則2017年蔬菜產量為80(1+x)噸,2018年蔬菜產量為80(1+x)(1+x)噸,預計2018年蔬菜產量達到100噸,即:80(1+x)2=100,故選A.【點睛】本題考查了一元二次方程的應用(增長率問題).解題的關鍵在于理清題目的含義,找到2017年和2018年的產量的代數式,根據條件找準等量關系式,列出方程.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】分析:根據三角形的三邊關系“任意兩邊之和>第三邊,任意兩邊之差<第三邊”,求得第三邊的取值范圍,再進一步根據第三邊是整數求解.詳解:根據三角形的三邊關系,得第三邊>4,而<1.又第三條邊長為整數,則第三邊是2.點睛:此題主要是考查了三角形的三邊關系,同時注意整數這一條件.12、2+【解析】

試題分析:過P點作PE⊥AB于E,過P點作PC⊥x軸于C,交AB于D,連接PA.∵PE⊥AB,AB=2,半徑為2,∴AE=AB=,PA=2,根據勾股定理得:PE=1,∵點A在直線y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=∵⊙P的圓心是(2,a),∴a=PD+DC=2+.【點睛】本題主要考查的就是垂徑定理的應用以及直角三角形勾股定理的應用,屬于中等難度的題型.解決這個問題的關鍵就是在于作出輔助線,將所求的線段放入到直角三角形中.本題還需要注意的一個隱含條件就是:直線y=x或直線y=-x與x軸所形成的銳角為45°,這一個條件的應用也是很重要的.13、1【解析】試題分析:∵多邊形的每一個內角都等于108°,∴每一個外角為72°.∵多邊形的外角和為360°,∴這個多邊形的邊數是:360÷÷72=1.14、10°【解析】

根據線段的垂直平分線得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度數即可得到答案.【詳解】∵點D、E分別是AB、AC邊的垂直平分線與BC的交點,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,故答案為10°【點睛】本題主要考查對等腰三角形的性質,三角形的內角和定理,線段的垂直平分線的性質等知識點的理解和掌握,能綜合運用這些性質進行計算是解此題的關鍵.15、1【解析】

過點D作于點H,根等腰三角形的性質求得BD的長度,繼而得到,結合三角形中位線定理求得EF的長度即可.【詳解】解:如圖,過點D作于點H,

過點D作于點H,,

又平行線間的距離是8,點D是AB的中點,

,

在直角中,由勾股定理知,.

點D是AB的中點,

又點E、F分別是AC、BC的中點,

是的中位線,

故答案是:1.【點睛】考查了三角形中位線定理和平行線的性質,解題的關鍵是根據平行線的性質求得DH的長度.16、1%【解析】

依據最喜歡羽毛球的學生數以及占被調查總人數的百分比,即可得到被調查總人數,進而得出最喜歡籃球的學生數以及最喜歡足球的學生數占被調查總人數的百分比.【詳解】∵被調查學生的總數為10÷20%=50人,

∴最喜歡籃球的有50×32%=16人,

則最喜歡足球的學生數占被調查總人數的百分比=×100%=1%,

故答案為:1.【點睛】本題主要考查扇形統計圖,扇形統計圖是用整個圓表示總數用圓內各個扇形的大小表示各部分數量占總數的百分數.通過扇形統計圖可以很清楚地表示出各部分數量同總數之間的關系.17、【解析】

認真審題,根據垂線段最短得出PM⊥AB時線段PM最短,分別求出PB、OB、OA、AB的長度,利用△PBM∽△ABO,即可求出本題的答案【詳解】解:如圖,過點P作PM⊥AB,則:∠PMB=90°,當PM⊥AB時,PM最短,因為直線y=x﹣3與x軸、y軸分別交于點A,B,可得點A的坐標為(4,0),點B的坐標為(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.三、解答題(共7小題,滿分69分)18、(1);(2)-2或-1;(3)-1≤n<1或1<n≤3.【解析】

(1)把點,代入拋物線得關于a,b的二元一次方程組,解出這個方程組即可;(2)根據題意畫出圖形,分三種情況進行討論;(3)作出圖形,把其中一點恰好在拋物線上時算出,再確定其取值范圍.【詳解】解:(1)依題意,得:解得:∴此拋物線的解析式;(2)設直線AB的解析式為y=kx+b,依題意得:解得:∴直線AB的解析式為y=-x.∵點P的橫坐標為m,且在拋物線上,∴點P的坐標為(m,)∵軸,且點Q有線段AB上,∴點Q的坐標為(m,-m)①當PQ=AP時,如圖,∵∠APQ=90°,軸,∴解得,m=-2或m=1(舍去)②當AQ=AP時,如圖,過點A作AC⊥PQ于C,∵為等腰直角三角形,∴2AC=PQ即m=1(舍去)或m=-1.綜上所述,當為等腰直角三角形時,求的值是-2惑-1.;(3)①如圖,當n<1時,依題意可知C,D的橫坐標相同,CE=2(1-n)∴點E的坐標為(n,n-2)當點E恰好在拋物線上時,解得,n=-1.∴此時n的取值范圍-1≤n<1.②如圖,當n>1時,依題可知點E的坐標為(2-n,-n)當點E在拋物線上時,解得,n=3或n=1.∵n>1.∴n=3.∴此時n的取值范圍1<n≤3.綜上所述,n的取值范圍為-1≤n<1或1<n≤3.【點睛】本題主要考查了二次函數與幾何圖形的綜合應用,掌握相關幾何圖形的性質和二次函數的性質是解題的關鍵.19、(1)證明見解析;(2)【解析】分析:(1)如下圖,連接OC,由已知易得OC⊥DE,結合BD⊥DE可得OC∥BD,從而可得∠1=∠2,結合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,從而可得BC平分∠DBA;(2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根據相似三角形的性質可得得,由,設EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.詳解:(1)證明:連結OC,∵DE與⊙O相切于點C,∴OC⊥DE.∵BD⊥DE,∴OC∥BD..∴∠1=∠2,∵OB=OC,∴∠1=∠3,∴∠2=∠3,即BC平分∠DBA..(2)∵OC∥BD,∴△EBD∽△EOC,△DBM∽△OCM,.∴,∴,∵,設EA=2k,AO=3k,∴OC=OA=OB=3k.∴.點睛:(1)作出如圖所示的輔助線,由“切線的性質”得到OC⊥DE結合BD⊥DE得到OC∥BD是解答第1小題的關鍵;(2)解答第2小題的關鍵是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM這樣利用相似三角形的性質結合已知條件即可求得所求值了.20、(1)①(2,0),(1,),(﹣1,);②y=x;③y=x,y=﹣x+;(2)①半徑為4,M(,);②﹣1<r<+1.【解析】

(1)①如圖2-1中,作BE∥OD交OA于E,CF∥OD交x軸于F.求出OE、OF、CF、OD、BE即可解決問題;②如圖2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行線分線段成比例定理即可解決問題;③如圖3-3中,作QM∥OA交OD于M.利用平行線分線段成比例定理即可解決問題;(2)①如圖3中,作MF⊥OA于F,作MN∥y軸交OA于N.解直角三角形即可解決問題;②如圖4中,連接OM,作MK∥x軸交y軸于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1時,⊙M的半徑即可解決問題.【詳解】(1)①如圖2﹣1中,作BE∥OD交OA于E,CF∥OD交x軸于F,由題意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=,∴A(2,0),B(1,),C(﹣1,),故答案為(2,0),(1,),(﹣1,);②如圖2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴=,∴,∴y=x;③如圖2﹣3中,作QM∥OA交OD于M,則有,∴,∴y=﹣x+,故答案為y=x,y=﹣x+;(2)①如圖3中,作MF⊥OA于F,作MN∥y軸交OA于N,∵ω=120°,OM⊥y軸,∴∠MOA=30°,∵MF⊥OA,OA=4,∴OF=FA=2,∴FM=2,OM=2FM=4,∵MN∥y軸,∴MN⊥OM,∴MN=,ON=2MN=,∴M(,);②如圖4中,連接OM,作MK∥x軸交y軸于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x軸,ω=120°,∴∠MKO=60°,∵MK=OK=2,∴△MKO是等邊三角形,∴MN=,當FN=1時,MF=﹣1,當EN=1時,ME=+1,觀察圖象可知當⊙M的半徑r的取值范圍為﹣1<r<+1.故答案為:﹣1<r<+1.【點睛】本題考查圓綜合題、平行線分線段成比例定理、等邊三角形的判定和性質、平面直角坐標系等知識,解題的關鍵是學會添加常用輔助線,構造平行線解決問題,屬于中考壓軸題.21、(1)詳見解析;(2);(3)【解析】

(1)連接OC,根據等腰三角形的性質得到∠A=∠OCA,由平行線的性質得到∠A=∠BOP,∠ACO=∠COP,等量代換得到∠COP=∠BOP,由切線的性質得到∠OBP=90°,根據全等三角形的性質即可得到結論;

(2)過O作OD⊥AC于D,根據相似三角形的性質得到CD?OP=OC2,根據已知條件得到,由三角函數的定義即可得到結論;

(3)連接BC,根據勾股定理得到BC==12,當M與A重合時,得到d+f=12,當M與B重合時,得到d+f=9,于是得到結論.【詳解】(1)連接OC,

∵OA=OC,

∴∠A=∠OCA,

∵AC∥OP,

∴∠A=∠BOP,∠ACO=∠COP,

∴∠COP=∠BOP,

∵PB是⊙O的切線,AB是⊙O的直徑,

∴∠OBP=90°,

在△POC與△POB中,,

∴△COP≌△BOP,

∴∠OCP=∠OBP=90°,

∴PC是⊙O的切線;

(2)過O作OD⊥AC于D,

∴∠ODC=∠OCP=90°,CD=AC,

∵∠DCO=∠COP,

∴△ODC∽△PCO,

∴,

∴CD?OP=OC2,

∵OP=AC,

∴AC=OP,

∴CD=OP,

∴OP?OP=OC2

∴,

∴sin∠CPO=;

(3)連接BC,

∵AB是⊙O的直徑,

∴AC⊥BC,

∵AC=9,AB=1,

∴BC==12,

當CM⊥AB時,

d=AM,f=BM,

∴d+f=AM+BM=1,

當M與B重合時,

d=9,f=0,

∴d+f=9,

∴d+f的取值范圍是:9≤d+f≤1.【點睛】本題考查了切線的判定和性質,全等三角形的判定和性質,相似三角形的判定和性質,平行線的性質,圓周角定理,正確的作出輔助線是解題的關鍵.22、(1)y=200x+74000(10≤x≤30)(2)有三種分配方案,方案一:派往A地區的甲型聯合收割機2臺,乙型聯合收割機28臺,其余的全派往B地區;方案二:派往A地區的甲型聯合收割機1臺,乙型聯合收割機29臺,其余的全派往B地區;方案三:派往A地區的甲型聯合收割機0臺,乙型聯合收割機30臺,其余的全派往B地區;(3)派往A地區30臺乙型聯合收割機,20臺甲型聯合收割機全部派往B地區,使該公司50臺收割機每天獲得租金最高.【解析】

(1)根據題意和表格中的數據可以得到y關于x的函數關系式;

(2)根據題意可以得到相應的不等式,從而可以解答本題;

(3)根據(1)中的函數解析式和一次函數的性質可以解答本題.【詳解】解:(1)設派往A地區x臺乙型聯合收割機,則派往B地區x臺乙型聯合收割機為(30﹣x)臺,派往A、B地區的甲型聯合收割機分別為(30﹣x)臺和(x﹣10)臺,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由題意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x為整數,∴x=28、29、30,∴有三種分配方案,方案一:派往A地區的甲型聯合收割機2臺,乙型聯合收割機28臺,其余的全派往B地區;方案二:派往A地區的甲型聯合收割機1臺,乙型聯合收割機29臺,其余的全派往B地區;方案三:派往A地區的甲型聯合收割機0臺,乙型聯合收割機30臺,其余的全派往B地區;(3)派往A地區30臺乙型聯合收割機,20臺甲型聯合收割機全部派往B地區,使該公司50臺收割機每天獲得租金最高,理由:∵y=200x+74000中y隨x的增大而增大,∴當x=30時,y取得最大值,此時y=80000,∴派往A地區30臺乙型聯合收割機,20臺甲型聯合收割機全部派往B地區,使該公司50臺收割機每天獲得租金最高.【點睛】本題考查一次函數的性質,解題關鍵是明確題意,找出所求問題需要的條件,利用一次函數和不等式的性質解答.23、(1)證明見解析;(2)CE∥AD,理由見解析;(3).【解析】

(1)根據角平分線的定義得到∠DAC=∠CAB,根據相似三角形的判定定理證明;(2)根據相似三角形的性質得到∠ACB=∠ADC=90°,根據直角三角形的性質得到CE=AE,根據等腰三角形的性質、平行線的判定定理證明;(3)根據相似三角形的性質列出比例式,計算即可.【詳解】解:(1)∵AC平分∠DAB,∴∠DAC=∠CAB,又∵AC2=AB?AD,∴AD:AC=AC:AB,∴△ADC∽△ACB;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論