工程力學(理論力學部分)平面匯交力系與平面力偶系2課件_第1頁
工程力學(理論力學部分)平面匯交力系與平面力偶系2課件_第2頁
工程力學(理論力學部分)平面匯交力系與平面力偶系2課件_第3頁
工程力學(理論力學部分)平面匯交力系與平面力偶系2課件_第4頁
工程力學(理論力學部分)平面匯交力系與平面力偶系2課件_第5頁
已閱讀5頁,還剩61頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

工程力學(理論力學部分)

河南科技大學建筑工程學院工程力學系工程力學(理論力學部分)F1F2FnF3M1Mn

力系靜力學F1F2FnF3M1Mn力系靜力學靜力分析基本概念

①匯交力系(planarconcurrentforcesystem)平面力系②平行力系(平面力偶系是其中的特殊情況)(planarparallelforcesystem)③一般力系(平面任意力系)(planargeneralforcesystem)力系分為:平面力系(planarforcesystem)空間力系(spaceforcesystem)簡單力系:指的是匯交力系、力偶系。

①匯交力系空間力系②平行力系(空間力偶系是其中的特殊情況)③一般力系(空間任意力系)例:起重機的掛鉤。靜力分析基本概念2.1平面匯交力系合成與平衡的幾何法2.1.1平面匯交力系合成的幾何法、力多邊形法則F3F2F1F4AF1F2F3F4FRabcdeabcdeF1F2F4F3FR各力矢與合力矢構成的多邊形稱為力多邊形。用力多邊形求合力的作圖規則稱為力的多邊形法則。力多邊形中表示合力矢量的邊稱為力多邊形的封閉邊。2.1平面匯交力系合成與平衡的幾何法2.1.1平面匯交2.1.1平面匯交力系合成的幾何法、力多邊形法則結論:平面匯交力系可簡化為一合力,其合力的大小與方向等于各分力的矢量和(幾何和),合力的作用線通過匯交點。

用矢量式表示為:如果一力與某一力系等效,則此力稱為該力系的合力。2.1.1平面匯交力系合成的幾何法、力多邊形法則結論:平面在平衡的情形下,力多邊形中最后一力的終點與第一力的起點重合,此時的力多邊形稱為封閉的力多邊形。于是,平面匯交力系平衡的必要與充分條件是:該力系的力多邊形自行封閉,這是平衡的幾何條件。2.1.2平面匯交力系平衡的幾何條件平面匯交力系平衡的必要與充分條件是:該力系的合力等于零。用矢量式表示為:在平衡的情形下,力多邊形中最后一力的終點與第一力的起點重A60oPB30oaaC(a)NB(b)BNADAC60o30oPEPNBNA60o30oHK(c)解:(1)取梁AB作為研究對象。(4)解出:NA=Pcos30=17.3kN,NB=Psin30=10kN(2)畫出受力圖。(3)應用平衡條件畫出P、NA和NB的閉合力三角形。例題1水平梁AB中點C作用著力P,其大小等于20kN,方向與梁的軸線成60o角,支承情況如圖(a)所示,試求固定鉸鏈支座A和活動鉸鏈支座B的反力。梁的自重不計。

A60oPB30oaaC(a)NB(b)BNADAC60o3[例2]

已知壓路機碾子重P=20kN,r=60cm,欲拉過h=8cm的障礙物。求:在中心作用的水平力F的大小和碾子對障礙物的壓力。①選碾子為研究對象②取分離體畫受力圖解:

∵當碾子剛離地面時NA=0,拉力F最大,這時拉力F和自重及支反力NB構成一平衡力系。由平衡的幾何條件,力多邊形封閉,故[例2]已知壓路機碾子重P=20kN,r=60cm,欲由作用力和反作用力的關系,碾子對障礙物的壓力等于23.1kN。此題也可用力多邊形方法用比例尺去量。F=11.5kN,NB=23.1kN所以又由幾何關系:由作用力和反作用力的關系,碾子對障礙物的壓力等于23.1kN2.2平面匯交力系合成與平衡的解析法2.2.1力在坐標軸上的投影FxyFxFyabO2.2平面匯交力系合成與平衡的解析法2.2.1力在坐標軸2.2.2力的正交分解與力的解析表達式FFxFyxyijO2.2.2力的正交分解與力的解析表達式FFxFyxyijO2.2.3合力投影定理平面匯交力系的合力在某軸上的投影,等于力系中各個分力在同一軸上投影的代數和。2.2.3合力投影定理平面匯交力系的合力在某軸上的投影2.2.4平面匯交力系合成的解析法2.2.4平面匯交力系合成的解析法2.2.4平面匯交力系的平衡方程

平面匯交力系平衡的必要和充分條件是:各力在作用面內兩個任選的坐標軸上投影的代數和等于零。上式稱為平面匯交力系的平衡方程。2.2.4平面匯交力系的平衡方程平面匯交力系平衡的必要[例2]

已知P=2kN求SCD,RA解:

1.取AB桿為研究對象2.畫AB的受力圖3.列平衡方程由EB=BC=0.4m,解得:;4.解方程[例2]已知P=2kN求SCD,RA解2.3平面力對點之矩的概念及計算MO(F)OhrFAB2.3.1力對點之矩(力矩)力F與點O位于同一平面內,點O稱為矩心,點O到力的作用線的垂直距離h稱為力臂。力對點之矩是一個代數量,它的絕對值等于力的大小與力臂的乘積,它的正負可按下法確定:力使物體繞矩心逆時針轉動時為正,反之為負。力矩的單位常用N·m或kN·m。2.3平面力對點之矩的概念及計算MO(F)OhrFAB2.2.3.2合力矩定理與力矩的解析表達式平面匯交力系的合力對于平面內任一點之矩等于所有各分力對于該點之矩的代數和。FFxFyxyOqxyA(1)合力矩定理(2)力矩的解析表達式2.3.2合力矩定理與力矩的解析表達式平面匯交力系的合例1已知F=1400N,r=60mm,a=20°,求力Fn對O點的矩。FnFrFtFn例1已知F=1400N,r=60mm,a=20°,求2.4平面力偶由兩個大小相等、方向相反且不共線的平行力組成的力系,稱為力偶,記為(F,F')。力偶的兩力之間的垂直距離d稱為力臂,力偶所在的平面稱為力偶作用面。力偶不能合成為一個力,也不能用一個力來平衡。力和力偶是靜力學的兩個基本要素。2.4.1力偶與力偶矩2.4平面力偶由兩個大小相等、方向相反且不共線的平行力2.4.1力偶與力偶矩FF'dDABC力偶是由兩個力組成的特殊力系,它的作用只改變物體的轉動狀態。力偶對物體的轉動效應用力偶矩來度量。平面力偶對物體的作用效應由以下兩個因素決定:(1)力偶矩的大小;(2)力偶在作用面內的轉向。平面力偶可視為代數量,以M或M(F,F')表示,平面力偶矩是一個代數量,其絕對值等于力的大小與力偶臂的乘積,正負號表示力偶的轉向:一般以逆時針轉向為正,反之則為負。力偶的單位與力矩相同。2.4.1力偶與力偶矩FF'dDABC力偶是由兩個力組2.4.2同平面內力偶的等效定理定理定理:在同平面內的兩個力偶,如果力偶矩相等,則兩力偶彼此等效。推論:(1)任一力偶可以在它的作用面內任意移轉,而不改變它對剛體的作用。因此,力偶對剛體的作用與力偶在其作用面內的位置無關。(2)只要保持力偶矩的大小和力偶的轉向不變,可以同時改變力偶中力的大小和力偶臂的長短,而不改變力偶對剛體的作用。2.4.2同平面內力偶的等效定理定理定理:在同平面內的兩個2.4.2同平面內力偶的等效定理定理力偶的臂和力的大小都不是力偶的特征量,只有力偶矩才是力偶作用的唯一量度。今后常用如圖所示的符號表示力偶。M為力偶的矩。2.4.2同平面內力偶的等效定理定理力偶的臂和力的大小M1(F1,F'1),M2(F2,F'2)

在同平面內的任意個力偶可以合成為一個合力偶,合力偶矩等于各個力偶矩的代數和。

2.4.3平面力偶系的合成M1(F1,F'1),M2(F2,F'2)在同平面2.4.4平面力偶系的平衡條件所謂力偶系的平衡,就是合力偶的矩等于零。因此,平面力偶系平衡的必要和充分條件是:所有各力偶矩的代數和等于零,即2.4.4平面力偶系的平衡條件所謂力偶系的平衡,就是合力偶思考題1剛體上A、B、C、D四點組成一個平行四邊形,如在其四個頂點作用有四個力,此四力沿四個邊恰好組成封閉的力多邊形,如圖所示。此剛體是否平衡?F1F3BACDF2F4思考題1剛體上A、B、C、D四點組成一個平行四邊形,如在其四思考題2PORM從力偶理論知道,一力不能與力偶平衡。圖示輪子上的力P為什么能與M平衡呢?FO思考題2PORM從力偶理論知道,一力不能與力偶平衡。圖示輪子[例3]在一鉆床上水平放置工件,在工件上同時鉆四個等直徑的孔,每個鉆頭的力偶矩為,求工件的總切削力偶矩和A、B端水平反力?解:各力偶的合力偶矩為根據平面力偶系平衡方程有:由力偶只能與力偶平衡的性質,力NA與力NB組成一力偶。[例3]在一鉆床上水平放置工件,在工件上同時鉆四個等直徑[例4]圖示結構,已知M=800N.m,求A、C兩點的約束反力。[例4]圖示結構,已知M=800N.m,求A、C兩點的約[例5]圖示桿系,已知m,l。求A、B處約束力。解:1、研究對象二力桿:AD2、研究對象:整體思考:CB桿受力情況如何?m練習:[例5]圖示桿系,已知m,l。求A、B處約束力。解:1、研究解:1、研究對象二力桿:BC2、研究對象:整體mAD桿解:1、研究對象二力桿:BC2、研究對象:整體mAD桿[例6]不計自重的桿AB與DC在C處為光滑接觸,它們分別受力偶矩為M1與M2的力偶作用,轉向如圖。問M1與M2的比值為多大,結構才能平衡?60o60oABCDM1M2[例6]不計自重的桿AB與DC在C處為光滑接觸,它們分別受力解:取桿AB為研究對象畫受力圖。桿AB只受力偶的作用而平衡且C處為光滑面約束,則A處約束反力的方位可定。ABCM1RARCMi=0RA=RC=R,AC=aaR-M1=0M1=aR(1)60o60oABCDM1M2解:取桿AB為研究對象畫受力圖。桿AB只受力偶的作用取桿CD為研究對象。因C點約束方位已定,則D點約束反力方位亦可確定,畫受力圖。60o60oDM2BCARDRCRD=RC=RMi=0-0.5aR+M2=0M2=0.5aR(2)聯立(1)(2)兩式得:M1/M2=260o60oABCDM1M2取桿CD為研究對象。因C點約束方位已定,則D點約束反力方工程力學(理論力學部分)

河南科技大學建筑工程學院工程力學系工程力學(理論力學部分)F1F2FnF3M1Mn

力系靜力學F1F2FnF3M1Mn力系靜力學靜力分析基本概念

①匯交力系(planarconcurrentforcesystem)平面力系②平行力系(平面力偶系是其中的特殊情況)(planarparallelforcesystem)③一般力系(平面任意力系)(planargeneralforcesystem)力系分為:平面力系(planarforcesystem)空間力系(spaceforcesystem)簡單力系:指的是匯交力系、力偶系。

①匯交力系空間力系②平行力系(空間力偶系是其中的特殊情況)③一般力系(空間任意力系)例:起重機的掛鉤。靜力分析基本概念2.1平面匯交力系合成與平衡的幾何法2.1.1平面匯交力系合成的幾何法、力多邊形法則F3F2F1F4AF1F2F3F4FRabcdeabcdeF1F2F4F3FR各力矢與合力矢構成的多邊形稱為力多邊形。用力多邊形求合力的作圖規則稱為力的多邊形法則。力多邊形中表示合力矢量的邊稱為力多邊形的封閉邊。2.1平面匯交力系合成與平衡的幾何法2.1.1平面匯交2.1.1平面匯交力系合成的幾何法、力多邊形法則結論:平面匯交力系可簡化為一合力,其合力的大小與方向等于各分力的矢量和(幾何和),合力的作用線通過匯交點。

用矢量式表示為:如果一力與某一力系等效,則此力稱為該力系的合力。2.1.1平面匯交力系合成的幾何法、力多邊形法則結論:平面在平衡的情形下,力多邊形中最后一力的終點與第一力的起點重合,此時的力多邊形稱為封閉的力多邊形。于是,平面匯交力系平衡的必要與充分條件是:該力系的力多邊形自行封閉,這是平衡的幾何條件。2.1.2平面匯交力系平衡的幾何條件平面匯交力系平衡的必要與充分條件是:該力系的合力等于零。用矢量式表示為:在平衡的情形下,力多邊形中最后一力的終點與第一力的起點重A60oPB30oaaC(a)NB(b)BNADAC60o30oPEPNBNA60o30oHK(c)解:(1)取梁AB作為研究對象。(4)解出:NA=Pcos30=17.3kN,NB=Psin30=10kN(2)畫出受力圖。(3)應用平衡條件畫出P、NA和NB的閉合力三角形。例題1水平梁AB中點C作用著力P,其大小等于20kN,方向與梁的軸線成60o角,支承情況如圖(a)所示,試求固定鉸鏈支座A和活動鉸鏈支座B的反力。梁的自重不計。

A60oPB30oaaC(a)NB(b)BNADAC60o3[例2]

已知壓路機碾子重P=20kN,r=60cm,欲拉過h=8cm的障礙物。求:在中心作用的水平力F的大小和碾子對障礙物的壓力。①選碾子為研究對象②取分離體畫受力圖解:

∵當碾子剛離地面時NA=0,拉力F最大,這時拉力F和自重及支反力NB構成一平衡力系。由平衡的幾何條件,力多邊形封閉,故[例2]已知壓路機碾子重P=20kN,r=60cm,欲由作用力和反作用力的關系,碾子對障礙物的壓力等于23.1kN。此題也可用力多邊形方法用比例尺去量。F=11.5kN,NB=23.1kN所以又由幾何關系:由作用力和反作用力的關系,碾子對障礙物的壓力等于23.1kN2.2平面匯交力系合成與平衡的解析法2.2.1力在坐標軸上的投影FxyFxFyabO2.2平面匯交力系合成與平衡的解析法2.2.1力在坐標軸2.2.2力的正交分解與力的解析表達式FFxFyxyijO2.2.2力的正交分解與力的解析表達式FFxFyxyijO2.2.3合力投影定理平面匯交力系的合力在某軸上的投影,等于力系中各個分力在同一軸上投影的代數和。2.2.3合力投影定理平面匯交力系的合力在某軸上的投影2.2.4平面匯交力系合成的解析法2.2.4平面匯交力系合成的解析法2.2.4平面匯交力系的平衡方程

平面匯交力系平衡的必要和充分條件是:各力在作用面內兩個任選的坐標軸上投影的代數和等于零。上式稱為平面匯交力系的平衡方程。2.2.4平面匯交力系的平衡方程平面匯交力系平衡的必要[例2]

已知P=2kN求SCD,RA解:

1.取AB桿為研究對象2.畫AB的受力圖3.列平衡方程由EB=BC=0.4m,解得:;4.解方程[例2]已知P=2kN求SCD,RA解2.3平面力對點之矩的概念及計算MO(F)OhrFAB2.3.1力對點之矩(力矩)力F與點O位于同一平面內,點O稱為矩心,點O到力的作用線的垂直距離h稱為力臂。力對點之矩是一個代數量,它的絕對值等于力的大小與力臂的乘積,它的正負可按下法確定:力使物體繞矩心逆時針轉動時為正,反之為負。力矩的單位常用N·m或kN·m。2.3平面力對點之矩的概念及計算MO(F)OhrFAB2.2.3.2合力矩定理與力矩的解析表達式平面匯交力系的合力對于平面內任一點之矩等于所有各分力對于該點之矩的代數和。FFxFyxyOqxyA(1)合力矩定理(2)力矩的解析表達式2.3.2合力矩定理與力矩的解析表達式平面匯交力系的合例1已知F=1400N,r=60mm,a=20°,求力Fn對O點的矩。FnFrFtFn例1已知F=1400N,r=60mm,a=20°,求2.4平面力偶由兩個大小相等、方向相反且不共線的平行力組成的力系,稱為力偶,記為(F,F')。力偶的兩力之間的垂直距離d稱為力臂,力偶所在的平面稱為力偶作用面。力偶不能合成為一個力,也不能用一個力來平衡。力和力偶是靜力學的兩個基本要素。2.4.1力偶與力偶矩2.4平面力偶由兩個大小相等、方向相反且不共線的平行力2.4.1力偶與力偶矩FF'dDABC力偶是由兩個力組成的特殊力系,它的作用只改變物體的轉動狀態。力偶對物體的轉動效應用力偶矩來度量。平面力偶對物體的作用效應由以下兩個因素決定:(1)力偶矩的大?。?2)力偶在作用面內的轉向。平面力偶可視為代數量,以M或M(F,F')表示,平面力偶矩是一個代數量,其絕對值等于力的大小與力偶臂的乘積,正負號表示力偶的轉向:一般以逆時針轉向為正,反之則為負。力偶的單位與力矩相同。2.4.1力偶與力偶矩FF'dDABC力偶是由兩個力組2.4.2同平面內力偶的等效定理定理定理:在同平面內的兩個力偶,如果力偶矩相等,則兩力偶彼此等效。推論:(1)任一力偶可以在它的作用面內任意移轉,而不改變它對剛體的作用。因此,力偶對剛體的作用與力偶在其作用面內的位置無關。(2)只要保持力偶矩的大小和力偶的轉向不變,可以同時改變力偶中力的大小和力偶臂的長短,而不改變力偶對剛體的作用。2.4.2同平面內力偶的等效定理定理定理:在同平面內的兩個2.4.2同平面內力偶的等效定理定理力偶的臂和力的大小都不是力偶的特征量,只有力偶矩才是力偶作用的唯一量度。今后常用如圖所示的符號表示力偶。M為力偶的矩。2.4.2同平面內力偶的等效定理定理力偶的臂和力的大小M1(F1,F'1),M2(F2,F'2)

在同平面內的任意個力偶可以合成為一個合力偶,合力偶矩等于各個力偶矩的代數和。

2.4.3平面力偶系的合成M1(F1,F'1),M2(F2,F'2)在同平面2.4.4平面力偶系的平衡條件所謂力偶系的平衡,就是合力偶的矩等于零。因此,平面力偶系平衡的必要和充分條件是:所有各力偶矩的代數和等于零,即2.4.4平面力偶系的平衡條件所謂力偶系的平衡,就是合力偶思考題1剛體上A、B、C、D四點組成一個平行四邊形,如在其四個頂點作用有四個力,此四力沿四個邊恰好組成封閉的力多邊形,如圖所示。此剛體是否平衡?F1F3BACDF2F4思考題1剛體上A、B、C、D四點組成一個平行四邊形,如在其四思考題2PORM從力偶理論知道,一力不能與力偶平衡。圖示輪子上的力P為什么能與M平衡呢?FO思考題2PORM從力偶理論知道,一力不能與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論