2022年云南省玉溪市重點中學高三壓軸卷數學試卷含解析_第1頁
2022年云南省玉溪市重點中學高三壓軸卷數學試卷含解析_第2頁
2022年云南省玉溪市重點中學高三壓軸卷數學試卷含解析_第3頁
2022年云南省玉溪市重點中學高三壓軸卷數學試卷含解析_第4頁
2022年云南省玉溪市重點中學高三壓軸卷數學試卷含解析_第5頁
免費預覽已結束,剩余12頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.2.已知復數在復平面內對應的點的坐標為,則下列結論正確的是()A. B.復數的共軛復數是C. D.3.偶函數關于點對稱,當時,,求()A. B. C. D.4.若函數在時取得極值,則()A. B. C. D.5.已知函數在上單調遞增,則的取值范圍()A. B. C. D.6.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件7.已知集合,,則的真子集個數為()A.1個 B.2個 C.3個 D.4個8.設為定義在上的奇函數,當時,(為常數),則不等式的解集為()A. B. C. D.9.設,若函數在區間上有三個零點,則實數的取值范圍是()A. B. C. D.10.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.6011.已知是虛數單位,若,,則實數()A.或 B.-1或1 C.1 D.12.函數的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設,則_____,(的值為______.14.在一次體育水平測試中,甲、乙兩校均有100名學生參加,其中:甲校男生成績的優秀率為70%,女生成績的優秀率為50%;乙校男生成績的優秀率為60%,女生成績的優秀率為40%.對于此次測試,給出下列三個結論:①甲校學生成績的優秀率大于乙校學生成績的優秀率;②甲、乙兩校所有男生成績的優秀率大于甲、乙兩校所有女生成績的優秀率;③甲校學生成績的優秀率與甲、乙兩校所有學生成績的優秀率的大小關系不確定.其中,所有正確結論的序號是____________.15.若x,y滿足,則的最小值為________.16.的展開式中二項式系數最大的項的系數為_________(用數字作答).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,直線的傾斜角為,且經過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.(Ⅰ)求出直線的參數方程和曲線C的直角坐標方程;(Ⅱ)設直線與曲線C交于P,Q兩點,求的值.18.(12分)已知函數.(1)當時,求不等式的解集;(2)若關于的不等式的解集包含,求實數的取值范圍.19.(12分)在中,角,,所對的邊分別為,,,且.求的值;設的平分線與邊交于點,已知,,求的值.20.(12分)[選修45:不等式選講]已知都是正實數,且,求證:.21.(12分)已知函數f(x)=ex-x2-kx(其中e為自然對數的底,k為常數)有一個極大值點和一個極小值點.(1)求實數k的取值范圍;(2)證明:f(x)的極大值不小于1.22.(10分)第7屆世界軍人運動會于2019年10月18日至27日在湖北武漢舉行,賽期10天,共設置射擊、游泳、田徑、籃球等27個大項,329個小項.共有來自100多個國家的近萬名現役軍人同臺競技.前期為迎接軍運會順利召開,武漢市很多單位和部門都開展了豐富多彩的宣傳和教育活動,努力讓大家更多的了解軍運會的相關知識,并倡議大家做文明公民.武漢市體育局為了解廣大民眾對軍運會知識的知曉情況,在全市開展了網上問卷調查,民眾參與度極高,現從大批參與者中隨機抽取200名幸運參與者,他們得分(滿分100分)數據,統計結果如下:組別頻數5304050452010(1)若此次問卷調查得分整體服從正態分布,用樣本來估計總體,設,分別為這200人得分的平均值和標準差(同一組數據用該區間中點值作為代表),求,的值(,的值四舍五入取整數),并計算;(2)在(1)的條件下,為感謝大家參與這次活動,市體育局還對參加問卷調查的幸運市民制定如下獎勵方案:得分低于的可以獲得1次抽獎機會,得分不低于的可獲得2次抽獎機會,在一次抽獎中,抽中價值為15元的紀念品A的概率為,抽中價值為30元的紀念品B的概率為.現有市民張先生參加了此次問卷調查并成為幸運參與者,記Y為他參加活動獲得紀念品的總價值,求Y的分布列和數學期望,并估算此次紀念品所需要的總金額.(參考數據:;;.)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據,兩邊平方,化簡得,再利用數量積定義得到求解.【詳解】因為平面向量,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【點睛】本題主要考查平面向量的模,向量的夾角和數量積運算,屬于基礎題.2.D【解析】

首先求得,然后根據復數乘法運算、共軛復數、復數的模、復數除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復數,則,所以A選項不正確;復數的共軛復數是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復數的幾何意義,共軛復數,復數的模,復數的乘法和除法運算等基礎知識;考查運算求解能力,推理論證能力,數形結合思想.3.D【解析】

推導出函數是以為周期的周期函數,由此可得出,代值計算即可.【詳解】由于偶函數的圖象關于點對稱,則,,,則,所以,函數是以為周期的周期函數,由于當時,,則.故選:D.【點睛】本題考查利用函數的對稱性和奇偶性求函數值,推導出函數的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.4.D【解析】

對函數求導,根據函數在時取得極值,得到,即可求出結果.【詳解】因為,所以,又函數在時取得極值,所以,解得.故選D【點睛】本題主要考查導數的應用,根據函數的極值求參數的問題,屬于常考題型.5.B【解析】

由,可得,結合在上單調遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數的單調性的應用,考查了學生的邏輯推理能力,屬于基礎題.6.C【解析】

先根據直線與直線平行確定的值,進而即可確定結果.【詳解】因為直線與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎題型.7.C【解析】

求出的元素,再確定其真子集個數.【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數問題,解題時可先確定交集中集合的元素個數,解題關鍵是對集合元素的認識,本題中集合都是曲線上的點集.8.D【解析】

由可得,所以,由為定義在上的奇函數結合增函數+增函數=增函數,可知在上單調遞增,注意到,再利用函數單調性即可解決.【詳解】因為在上是奇函數.所以,解得,所以當時,,且時,單調遞增,所以在上單調遞增,因為,故有,解得.故選:D.【點睛】本題考查利用函數的奇偶性、單調性解不等式,考查學生對函數性質的靈活運用能力,是一道中檔題.9.D【解析】令,可得.在坐標系內畫出函數的圖象(如圖所示).當時,.由得.設過原點的直線與函數的圖象切于點,則有,解得.所以當直線與函數的圖象切時.又當直線經過點時,有,解得.結合圖象可得當直線與函數的圖象有3個交點時,實數的取值范圍是.即函數在區間上有三個零點時,實數的取值范圍是.選D.點睛:已知函數零點的個數(方程根的個數)求參數值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數范圍;(2)分離參數法:先將參數分離,轉化成求函數的值域問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解,對于一些比較復雜的函數的零點問題常用此方法求解.10.D【解析】

先設A點的坐標為,根據對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結合橢圓的標準方程,即可求解.【詳解】由題意,設A點的坐標為,根據對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.【點睛】本題主要考查了橢圓的標準方程及簡單的幾何性質,以及三角形面積公式的應用,著重考查了數形結合思想,以及化歸與轉化思想的應用.11.B【解析】

由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復數的運算,屬于基礎題12.A【解析】

根據函數的奇偶性和單調性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數,排除C和D.當時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點睛】本小題主要考查函數圖像的識別,考查利用導數研究函數的單調區間和極值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.7201【解析】

利用二項展開式的通式可求出;令中的,得兩個式子,代入可得結果.【詳解】利用二項式系數公式,,故,,故(=,故答案為:720;1.【點睛】本題考查二項展開式的通項公式的應用,考查賦值法,是基礎題.14.②③【解析】

根據局部頻率和整體頻率的關系,依次判斷每個選項得到答案.【詳解】不能確定甲乙兩校的男女比例,故①不正確;因為甲乙兩校的男生的優秀率均大于女生成績的優秀率,故甲、乙兩校所有男生成績的優秀率大于甲、乙兩校所有女生成績的優秀率,故②正確;因為不能確定甲乙兩校的男女比例,故不能確定甲校學生成績的優秀率與甲、乙兩校所有學生成績的優秀率的大小關系,故③正確.故答案為:②③.【點睛】本題考查局部頻率和整體頻率的關系,意在考查學生的理解能力和應用能力.15.5【解析】

先作出可行域,再做直線,平移,找到使直線在y軸上截距最小的點,代入即得。【詳解】作出不等式組表示的平面區域,如圖,令,則,作出直線,平移直線,由圖可得,當直線經過C點時,直線在y軸上的截距最小,由,可得,因此的最小值為.故答案為:4【點睛】本題考查不含參數的線性規劃問題,是基礎題。16.5670【解析】

根據二項式展開的通項,可得二項式系數的最大項,可求得其系數.【詳解】二項展開式一共有項,所以由二項式系數的性質可知二項式系數最大的項為第5項,系數為.故答案為:5670【點睛】本題考查了二項式定理展開式的應用,由通項公式求二項式系數,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(t為參數),;(Ⅱ)1.【解析】

(Ⅰ)直接由已知寫出直線l1的參數方程,設N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由題意可得,即ρ=4cosθ,然后化為普通方程;(Ⅱ)將l1的參數方程代入C的直角坐標方程中,得到關于t的一元二次方程,再由參數t的幾何意義可得|AP|?|AQ|的值.【詳解】(Ⅰ)直線l1的參數方程為,(t為參數)即(t為參數).設N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),則,即,即ρ=4cosθ,∴曲線C的直角坐標方程為x2-4x+y2=0(x≠0).(Ⅱ)將l1的參數方程代入C的直角坐標方程中,得,即,t1,t2為方程的兩個根,∴t1t2=-1,∴|AP|?|AQ|=|t1t2|=|-1|=1.【點睛】本題考查簡單曲線的極坐標方程,考查直角坐標方程與直角坐標方程的互化,訓練了直線參數方程中參數t的幾何意義的應用,是中檔題.18.(1)(2)【解析】

(1)按進行分類,得到等價不等式組,分別解出解集,再取并集,得到答案;(2)將問題轉化為在時恒成立,按和分類討論,分別得到不等式恒成立時對應的的范圍,再取交集,得到答案.【詳解】解:(1)當時,等價于或或,解得或或,所以不等式的解集為:.(2)依題意即在時恒成立,當時,,即,所以對恒成立∴,得;當時,,即,所以對任意恒成立,∴,得∴,綜上,.【點睛】本題考查分類討論解絕對值不等式,分類討論研究不等式恒成立問題,屬于中檔題.19.;.【解析】

利用正弦定理化簡求值即可;利用兩角和差的正弦函數的化簡公式,結合正弦定理求出的值.【詳解】解:,由正弦定理得:,,,,,又,為三角形內角,故,,則,故,;(2)平分,設,則,,,,則,,又,則在中,由正弦定理:,.【點睛】本題考查正弦定理和兩角和差的正弦函數的化簡公式,二倍角公式,考查運算能力,屬于基礎題.20.見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證.試題解析:證明:∵,又,∴考點:柯西不等式21.(1);(2)見解析【解析】

(1)求出,記,問題轉化

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論