




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線在點處的切線方程為()A. B. C. D.2.已知實數,,函數在上單調遞增,則實數的取值范圍是()A. B. C. D.3.已知函數的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點旋轉;②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④4.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.5.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.6.在復平面內,復數z=i對應的點為Z,將向量繞原點O按逆時針方向旋轉,所得向量對應的復數是()A. B. C. D.7.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.8.已知函數的部分圖象如圖所示,則()A. B. C. D.9.已知分別為雙曲線的左、右焦點,點是其一條漸近線上一點,且以為直徑的圓經過點,若的面積為,則雙曲線的離心率為()A. B. C. D.10.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經過,設球的半徑分別為,則()A. B. C. D.11.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.412.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,則_________.14.已知數列滿足對任意,若,則數列的通項公式________.15.如圖,某地一天從時的溫度變化曲線近似滿足函數,則這段曲線的函數解析式為______________.16.已知向量,滿足,,,則向量在的夾角為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)當時,解關于的不等式;(2)若對任意,都存在,使得不等式成立,求實數的取值范圍.18.(12分)設函數.(1)求不等式的解集;(2)若的最小值為,且,求的最小值.19.(12分)設函數.(1)若,時,在上單調遞減,求的取值范圍;(2)若,,,求證:當時,.20.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.21.(12分)已知函數(1)若函數在處取得極值1,證明:(2)若恒成立,求實數的取值范圍.22.(10分)如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點,滿足,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
將點代入解析式確定參數值,結合導數的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當時,代入可得,所以切點坐標為,求得導函數可得,由導數幾何意義可知,由點斜式可得切線方程為,即,故選:A.【點睛】本題考查了導數的幾何意義,在曲線上一點的切線方程求法,屬于基礎題.2.D【解析】
根據題意,對于函數分2段分析:當,由指數函數的性質分析可得①,當,由導數與函數單調性的關系可得,在上恒成立,變形可得②,再結合函數的單調性,分析可得③,聯立三個式子,分析可得答案.【詳解】解:根據題意,函數在上單調遞增,
當,若為增函數,則①,
當,若為增函數,必有在上恒成立,
變形可得:,
又由,可得在上單調遞減,則,
若在上恒成立,則有②,
若函數在上單調遞增,左邊一段函數的最大值不能大于右邊一段函數的最小值,則需有,③
聯立①②③可得:.
故選:D.【點睛】本題考查函數單調性的性質以及應用,注意分段函數單調性的性質.3.D【解析】
計算得到,,故函數是周期函數,軸對稱圖形,故②④正確,根據圖像知①③錯誤,得到答案.【詳解】,,,當沿軸正方向平移個單位時,重合,故②正確;,,故,函數關于對稱,故④正確;根據圖像知:①③不正確;故選:.【點睛】本題考查了根據函數圖像判斷函數性質,意在考查學生對于三角函數知識和圖像的綜合應用.4.C【解析】
在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點睛】本題考查直線與平面所成的角,定義法求空間角要體現“做”“證”“算”,三步驟缺一不可,屬于基礎題.5.D【解析】
使用不同方法用表示出,結合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎題.6.A【解析】
由復數z求得點Z的坐標,得到向量的坐標,逆時針旋轉,得到向量的坐標,則對應的復數可求.【詳解】解:∵復數z=i(i為虛數單位)在復平面中對應點Z(0,1),
∴=(0,1),將繞原點O逆時針旋轉得到,
設=(a,b),,則,即,
又,解得:,∴,對應復數為.故選:A.【點睛】本題考查復數的代數表示法及其幾何意義,是基礎題.7.C【解析】
根據三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運算求解的能力,屬于中檔題.8.A【解析】
先利用最高點縱坐標求出A,再根據求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數的據圖求式問題以及三角函數的公式變換.據圖求式問題要注意結合五點法作圖求解.屬于中檔題.9.B【解析】
根據題意,設點在第一象限,求出此坐標,再利用三角形的面積即可得到結論.【詳解】由題意,設點在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經過點,則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點睛】本題主要考查雙曲線的離心率,解決本題的關鍵在于求出與的關系,屬于基礎題.10.D【解析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內切于正方體,設,兩球球心和公切點都在體對角線上,通過幾何關系可轉化出,進而求解【詳解】根據拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內切于正方體,不妨設,兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉化,拋物線幾何性質的使用,內切球的性質,數形結合思想,轉化思想,直觀想象與數學運算的核心素養11.C【解析】
方法一:設,利用拋物線的定義判斷出是的中點,結合等腰三角形的性質求得點的橫坐標,根據拋物線的定義求得,進而求得.方法二:設出兩點的橫坐標,由拋物線的定義,結合求得的關系式,聯立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以.方法二:拋物線的準線方程為,直線由題意設兩點橫坐標分別為,則由拋物線定義得又①②由①②得.故選:C【點睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關系,屬于中檔題.12.B【解析】
連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先由題意得:,再利用向量數量積的幾何意義得,可得結果.【詳解】由知:,則在方向的投影為,由向量數量積的幾何意義得:,∴故答案為【點睛】本題考查了投影的應用,考查了數量積的幾何意義及向量的模的運算,屬于基礎題.14.【解析】
由可得,利用等比數列的通項公式可得,再利用累加法求和與等比數列的求和公式,即可得出結論.【詳解】由,得,數列是等比數列,首項為2,公比為2,,,,,滿足上式,.故答案為:.【點睛】本題考查數列的通項公式,遞推公式轉化為等比數列是解題的關鍵,利用累加法求通項公式,屬于中檔題.15.,【解析】
根據圖象得出該函數的最大值和最小值,可得,,結合圖象求得該函數的最小正周期,可得出,再將點代入函數解析式,求出的值,即可求得該函數的解析式.【詳解】由圖象可知,,,,,從題圖中可以看出,從時是函數的半個周期,則,.又,,得,取,所以,.故答案為:,.【點睛】本題考查由圖象求函數解析式,考查計算能力,屬于中等題.16.【解析】
把平方利用數量積的運算化簡即得解.【詳解】因為,,,所以,∴,∴,因為所以.故答案為:【點睛】本題主要考查平面向量的數量積的運算法則,考查向量的夾角的計算,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)分類討論去絕對值號,然后解不等式即可.(2)因為對任意,都存在,使得不等式成立,等價于,根據絕對值不等式易求,根據二次函數易求,然后解不等式即可.【詳解】解:(1)當時,,則當時,由得,,解得;當時,恒成立;當時,由得,,解得.所以的解集為(2)對任意,都存在,得成立,等價于.因為,所以,且|,①當時,①式等號成立,即.又因為,②當時,②式等號成立,即.所以,即即的取值范圍為:.【點睛】知識:考查含兩個絕對值號的不等式的解法;恒成立問題和存在性問題求參變數的范圍問題;能力:分析問題和解決問題的能力以及運算求解能力;中檔題.18.(1)或(2)最小值為.【解析】
(1)討論,,三種情況,分別計算得到答案.(2)計算得到,再利用均值不等式計算得到答案.【詳解】(1)當時,由,解得;當時,由,解得;當時,由,解得.所以所求不等式的解集為或.(2)根據函數圖像知:當時,,所以.因為,由,可知,所以,當且僅當,,時,等號成立.所以的最小值為.【點睛】本題考查了解絕對值不等式,函數最值,均值不等式,意在考查學生對于不等式,函數知識的綜合應用.19.(1)(2)見解析【解析】
(1)在上單調遞減等價于在恒成立,分離參數即可解決.(2)先對求導,化簡后根據零點存在性定理判斷唯一零點所在區間,構造函數利用基本不等式求解即可.【詳解】(1),時,,,∵在上單調遞減.∴,.令,,時,;時,,∴在上為減函數,在上為增函數.∴,∴.∴的取值范圍為.(2)若,,時,,,令,顯然在上為增函數.又,,∴有唯一零點.且,時,,;時,,,∴在上為增函數,在上為減函數.∴.又,∴,,.∴.,.∴當時,.【點睛】此題考查函數定區間上單調,和零點存在性定理等知識點,難點為找到最值后的構造函數求值域,屬于較難題目.20.(1)證明見詳解;(2).【解析】
(1)取中點為,通過證明//,進而證明線面平行;(2)取中點為,以為坐標原點建立直角坐標系,求得兩個平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點,連結,,如下圖所示:在中,因為為的中點,,且,又為的中點,,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點,連結,,則,平面,以為原點,分別以,,為,,軸,建立空間直角坐標系,如下圖所示:則,,,,,,,,設平面的一個法向量,則,則,令.則,同理得平面的一個法向量為,則,故平面與平面所成二面角(銳角)的余弦值為.【點睛】本題考查由線線平行推證線面平行,以及利用向量法求解二面角的大小,屬綜合中檔題.21.(1)證明見詳解;(2)【解析】
(1)求出函數的導函數,由在處取得極值1,可得且.解出,構造函數,分析其單調性,結合,即可得到的范圍,命題得證;
(2)由分離參數,得到恒成立,構造函數,求導函數,再構造函數,進行二次求導.由知,則在上單調遞增.根據零點存在定理可知有唯一零點,且.由此判斷出時,單調遞減,時,單調遞增,則,即.由得,再次構造函數,求導分析單調性,從而得,即,最終求得,則.【詳解】解:(1)由題知,∵函數在,處取得極值1,,且,,,令,則為增函數,,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,則令,則,,,在上單調遞增,且,有唯一零點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省東臺市第七聯盟2025年初三第一次聯考綜合試題含解析
- 遼寧師范大學海華學院《機電設備概論》2023-2024學年第二學期期末試卷
- 江蘇省泰興市城黃北區教研中學心2025屆初三下學期入學考試題物理試題文試題含解析
- 咸陽市重點中學2025年高三學情摸底生物試題含解析
- 青光眼的護理
- 湛江市大成中學高一下學期物理期中測試題
- 2025電商代運營合同樣本(版)
- 2025智能解決方案平臺運營服務外包合同
- 脛骨近端骨折護理查房
- 基礎護理學:護士職業防護
- 2024-2025學年七年級下學期期中英語模擬試卷(深圳專用)(原卷版)
- 生物樣本庫建設及其在研究中的應用試題及答案
- 北京市海淀區2024-2025學年第二學期期中練習暨海淀高三高三一模(海淀一模)(英語試卷+答案 )
- 2024年河南輕工職業學院單招職業適應性測試題庫必考題
- 工程塑膠材料采購合同(2篇)
- 山西省華遠國際陸港集團專業技術人員招聘筆試真題2024
- 新污染物環境風險評估:理論與制度構建
- 2025中考英語沖刺-傳統文化詩詞
- 2025山西地質集團招聘37人筆試參考題庫附帶答案詳解
- 金融科技學知到智慧樹章節測試課后答案2024年秋重慶工商大學
- 2025屆北京市朝陽區高三語文一模議論文“說托舉”寫作導引(5篇范文)
評論
0/150
提交評論