電動力學電動力學二二唯一性定理_第1頁
電動力學電動力學二二唯一性定理_第2頁
電動力學電動力學二二唯一性定理_第3頁
電動力學電動力學二二唯一性定理_第4頁
電動力學電動力學二二唯一性定理_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、電動力學電動力學二二唯一性定理第1頁,共22頁,2022年,5月20日,18點41分,星期四2一、靜電問題的唯一性定理區域V可以分為若干個均勻區域Vi,每一均勻區域的電容率為i 。設V內有給定的電荷分布(x) 。電勢在均勻區域Vi內滿足泊松方程第2頁,共22頁,2022年,5月20日,18點41分,星期四3除此之外,要完全確定V內的電場,還必須給出V的外邊界S上的一些條件。在兩區域Vi和Vj的分界面上滿足邊值關系第3頁,共22頁,2022年,5月20日,18點41分,星期四4唯一性定理:設區域V內自由電荷分布為(x) ,在V的外邊界S上給定(i)電勢s或(ii)電勢的法向倒數(/n)s則V內的

2、電場唯一地確定。也就是說,在V內存在唯一的解,它在每個均勻區域內滿足泊松方程,在兩均勻區域分界面上滿足邊值關系,并在V的邊界S上滿足給定的或 /n值。第4頁,共22頁,2022年,5月20日,18點41分,星期四5證明:設有兩組不同的解和滿足唯一性定理的條件。由得令第5頁,共22頁,2022年,5月20日,18點41分,星期四6在兩均勻區界面上有在整個區域V的邊界S上有或第6頁,共22頁,2022年,5月20日,18點41分,星期四7考慮第i個均勻區Vi的界面Si上的積分對所有分區Vi求和在均勻區界面 內部邊界積分相互抵消 第7頁,共22頁,2022年,5月20日,18點41分,星期四8這說明

3、和至多只能相差一個常量。但電勢的附加常量對電場沒有影響,這就證明了唯一性定理。而右邊被積函數i()2 0。上式成立的條件是在V內各點上都有=0 ,即在V內,外邊界因 積分亦為零或 第8頁,共22頁,2022年,5月20日,18點41分,星期四9二、有導體存在時的唯一性定理當有導體存在時,由實踐經驗我們知道,為了確定電場,所需要條件有兩種類型:一類是給定每個導體上的電勢i;另一類是給定每個導體上的總電荷Qi。第9頁,共22頁,2022年,5月20日,18點41分,星期四10如圖設在某區域V內有一些導體,除去導體內部以后的區域為V。設V內有給定電荷分布,S上給定了|s 或(/n)|s值。第10頁,

4、共22頁,2022年,5月20日,18點41分,星期四11第二類型:設區域V內有一些導體,給定導體之外的電荷分布 ,給定各導體上的總電荷Qi以及V的邊界S上的 或/n 值,則V內的電場唯一地確定。第一類型:當每個導體上的電勢i給定時,即給出了V所有邊界上的 或(/n)值,因而由上一小節證明了的唯一性定理可知, V內的電場被唯一確定。第11頁,共22頁,2022年,5月20日,18點41分,星期四12在第i個導體上滿足總電荷條件和等勢面條件以及在V的邊界S上具有給定的|s 或(/n)|s值。也就是說,存在唯一的解,它在導體以外滿足泊松方程第12頁,共22頁,2022年,5月20日,18點41分,

5、星期四13證明設有兩個解和滿足或則滿足第13頁,共22頁,2022年,5月20日,18點41分,星期四14對區域V用公式第14頁,共22頁,2022年,5月20日,18點41分,星期四15上式左邊的面積分包括V的邊界S以及每個導體的表面Si上的積分。在Si上的積分在S上的積分由此第15頁,共22頁,2022年,5月20日,18點41分,星期四16即和至多只能相差一個常量,因而電場唯一確定。當導體外的電勢確定后,導體上的電荷面密度由邊值關系確定第16頁,共22頁,2022年,5月20日,18點41分,星期四17例 如圖兩同心導體球殼之間充以兩種介質,左半部電容率為1,右半部電容率為2,設內球殼帶

6、總電荷Q,外球殼接地,求電場和球殼上的電荷分布。第17頁,共22頁,2022年,5月20日,18點41分,星期四18設兩介質內的電勢、電場強度和電位移分別為解第18頁,共22頁,2022年,5月20日,18點41分,星期四19如果我們假設E仍保持球對稱性,即此時邊值關系得到滿足。由于左右兩半是不同介質,因此一般不同于只有一種均勻介質時的球對稱解。在找嘗試解時,我們先考慮兩介質分界面上的邊值關系第19頁,共22頁,2022年,5月20日,18點41分,星期四20導體球面上的積分將電場值代入得解出第20頁,共22頁,2022年,5月20日,18點41分,星期四21則此解滿足唯一性定理的所有條件,因此是唯一正確的解。注意導體兩半球上的面電荷分布是不同的,但E卻保持球對稱性。第21頁,共22頁,2022年,5月20日,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論