




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、精選優質文檔-傾情為你奉上三角函數公式兩角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tan(A-B) =cot(A+B) = cot(A-B) =倍角公式tan2A = Sin2A=2SinACosA Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan
2、3a = tana·tan(+a)·tan(-a)半角公式sin()= cos()= tan()= cot()= tan()=和差化積 sina+sinb=2sincos sina-sinb=2cossincosa+cosb = 2coscos cosa-cosb = -2sinsintanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB 積化和差 sinasinb = -cos(a+b)-cos(a-b)
3、 cosacosb = cos(a+b)+cos(a-b)sinacosb = sin(a+b)+sin(a-b) cosasinb = sin(a+b)-sin(a-b)誘導公式 sin(-a) = -sina cos(-a) = cosa sin(-a) = cosa cos(-a) = sina sin(+a) = cosa cos(+a) = -sina sin(-a) = sina cos(-a) = -cosasin(+a) = -sina cos(+a) = -cosa tgA=tanA =萬能公式sina= cosa= tana=其它公式asina+bcosa=×si
4、n(a+c) 其中tanc=asin(a)-bcos(a) = ×cos(a-c) 其中tan(c)=1+sin(a) =(sin+cos)21-sin(a) = (sin-cos)2其他非重點三角函數csc(a) = sec(a) =公式一: 設為任意角,終邊相同的角的同一三角函數的值相等: sin(2k)= sin cos(2k)= cos tan(2k)= tan cot(2k)= cot 公式二: 設為任意角,+的三角函數值與的三角函數值之間的關系: sin()= -sin cos()= -cos tan()= tan cot()= cot 公式三: 任意角與 -的三角函數值
5、之間的關系: sin(-)= -sin cos(-)= cos tan(-)= -tan cot(-)= -cot 公式四: 利用公式二和公式三可以得到-與的三角函數值之間的關系: sin(-)= sin cos(-)= -cos tan(-)= -tan cot(-)= -cot 公式五: 利用公式-和公式三可以得到2-與的三角函數值之間的關系: sin(2-)= -sin cos(2-)= cos tan(2-)= -tan cot(2-)= -cot 公式六: ±及±與的三角函數值之間的關系: sin(+)= cos cos(+)= -sin tan(+)= -cot
6、 cot(+)= -tan sin(-)= cos cos(-)= sin tan(-)= cot cot(-)= tan sin(+)= -cos cos(+)= sin tan(+)= -cot cot(+)= -tan sin(-)= -cos cos(-)= -sin tan(-)= cot cot(-)= tan (以上kZ) 這個物理常用公式我費了半天的勁才輸進來,希望對大家有用 Asin(t+)+ Bsin(t+) =×sin正切函數;余切函數;正割函數;余割函數三角函數奇偶、周期性, 奇函數; 偶函數; , 周期; 周期;,周期常用三角函數公式: 反三角函數: :定義
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 天然氣輸配過程中能耗降低技術考核試卷
- 橡膠制品的供應鏈管理與協同創新考核試卷
- 綠色農業與食品安全考核試卷
- 寶石的結晶學與晶體生長研究進展評價考核試卷
- 禮儀用品企業環境管理體系考核試卷
- 遼寧省葫蘆島市六校聯考2025屆普通高中畢業班教學質量監測物理試題含解析
- 昆山杜克大學《學校體育學A》2023-2024學年第一學期期末試卷
- 永州市冷水灘區2025屆三年級數學第二學期期末統考模擬試題含解析
- 山東醫學高等專科學校《數學規劃》2023-2024學年第一學期期末試卷
- 江蘇省無錫市澄西片達標名校2025屆初三下學期一輪復習效果檢測試題語文試題含解析
- 山東省高中名校2025屆高三4月校際聯合檢測大聯考生物試題及答案
- 2025年武漢數學四調試題及答案
- 【MOOC】數學建模精講-西南交通大學 中國大學慕課MOOC答案
- 職業病防護設施與個體防護用品的使用和維護
- 綠化養護服務投標方案(技術標)
- 中國紡織文化智慧樹知到期末考試答案2024年
- (正式版)HGT 6313-2024 化工園區智慧化評價導則
- GB/T 3091-2015低壓流體輸送用焊接鋼管
- 實際控制人股東會決議
- 混凝土攪拌機設計論文
- 《Clean,Not Clean》RAZ分級閱讀繪本pdf資源
評論
0/150
提交評論