同濟大學第六版高等數學上下冊課后習題答案(18)_第1頁
同濟大學第六版高等數學上下冊課后習題答案(18)_第2頁
同濟大學第六版高等數學上下冊課后習題答案(18)_第3頁
同濟大學第六版高等數學上下冊課后習題答案(18)_第4頁
同濟大學第六版高等數學上下冊課后習題答案(18)_第5頁
免費預覽已結束,剩余1頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、.習題5-2 1. 試求函數當x=0及時的導數. 解 , 當x=0時, y¢=sin0=0; 當時, . 2. 求由參數表示式, 所給定的函數y對x的導數. 解 x¢(t)=sin t , y¢(t)=cos t , . 3. 求由所決定的隱函數y對x的導數. 解 方程兩對x求導得 e y y¢ +cos x =0, 于是 . 4. 當x為何值時, 函數有極值? 解 , 令I ¢(x)=0, 得x=0. 因為當x<0時, I ¢(x)<0; 當x>0時, I ¢(x)>0, 所以x=0是函數I(x)的

2、極小值點. 5. 計算下列各導數: (1); (2); (3). 解 (1). (2) . (3) =-cos(psin 2x)(sin x)¢+ cos(pcos 2x)( cos x)¢ =-cos x×cos(psin 2x)-sin x×cos(pcos 2x) =-cos x×cos(psin2x)- sin x×cos(p-psin2x) =-cos x×cos(psin2x)+ sin x×cos(psin2x) =(sin x-cos x)cos(psin2x). 6. 計算下列各定積分: (1);

3、 解 . (2); 解 . (3); 解 . (4); 解 . (5); 解 . (6); 解 . (7); 解 . (8); 解 . (9); 解 . (10); 解 . (11); 解 =-cos x|+cos x|=-cosp +cos0+cos2p-cosp=4. (12), 其中. 解 . 7. 設k為正整數. 試證下列各題: (1); (2); (3); (4). 證明 (1). (2). (3). (4). 8. 設k及l為正整數, 且k¹l . 試證下列各題: (1); (2); (3). 證明 (1) . (2) . (3). . 9. 求下列極限: (1); (2

4、). 解 (1). (2) . 10. 設. 求在0, 2上的表達式, 并討論j(x)在(0, 2)內的連續性. 解 當0£x£1時, ; 當1<x£2時, . 因此 . 因為, , , 所以j(x)在x=1處連續, 從而在(0, 2)內連續. 11. 設. 求在(-¥, +¥)內的表達式. 解 當x<0時, ; 當0£x£p時, ; 當x>p時, . 因此 . 12. 設f(x)在a, b上連續, 在(a, b)內可導且f ¢(x)£0, . 證明在(a, b)內有F ¢(x)£0. 證明 根據積分中值定理, 存在xÎa, x, 使. 于是有 . 由f ¢(x)£0可知f(x)在a, b上是單調減少的, 而a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論