上海工程技術大學概率論考試卷_第1頁
上海工程技術大學概率論考試卷_第2頁
上海工程技術大學概率論考試卷_第3頁
上海工程技術大學概率論考試卷_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、精選文檔一、單項選擇題(本題共7小題,每小題3分,共21分,將答案填在下面對應的空格中)1從一批產品中隨機抽兩次,每次抽1件. 以A表示事件“兩次都抽得正品”, B表示事件“至少抽得一件次品”,則下列關系式中正確的是( )。(A) (B) (C) (D) 2隨機變量X的分布函數,則系數k=()(A) (B) 1 (C) 2 (D) 43設隨機變量,且與相互獨立,則( )。(A ) (B) (C) (D) 4設為兩事件,已知,若相互獨立,則P(A)=( )(A) (B) (C) (D) 5. 已知隨機變量的概率密度為 令,則的概率密度是( )(A) (B) (C) (D) 6 設X1,X2,X3

2、,為總體X的樣本,E(x)的無偏估計是( ).(A) (B) (C) (D) 7設隨機變量與相互獨立且同服從正態分布,則統計量( ). (A) (B) (C) (D) 二、填空題(本題共7小題,每空格3分,共24分,將答案填在下面對應的空格中)1袋中有5個黑球,3個白球,從中任取的4個球中恰有3個白球的概率為_ _.2設隨機變量服從區間上均勻分布,則= 3設隨機變量的概率分布如右圖,則的概率為_ .4設隨機變量服從參數為3的泊松分布,若隨機變量,則的相關系數 5設隨機變量X服從參數為0.5的指數分布,則 ;并用切比雪夫不等式估計 .6設從總體平均值為50,標準差為8的總體中,隨機抽取容量為64

3、的一組樣本則樣本均值的方差_.7設總體服從二項分布是從總體中抽取的一個簡單隨機樣本,則參數的矩估計是 三、(8分)試卷中有一道選擇題,共有4個答案可供選擇,其中只有1個答案是正確的. 任一考生如果會解這道題,則一定能選出正確答案;如果不會解這道題,則不妨任選1個答案. 設考生會解這道題的概率是0.8.(1)求考生選出正確答案的概率;(2)已知某考生所選答案是正確的,求他確實會解這道題的概率.四、(10分)(10分)設二維隨機變量的概率密度函數為,其中為常數。1)確定常數的值;2)分別求的邊緣密度函數,并判斷與是否相互獨立?五、(8分)報童沿街向行人兜售報紙。設每位行人買報的概率為,且他們是否買

4、報是相互獨立的,試求報童在向100位行人兜售之后,賣掉報紙1530份的概率?六、(9分)設總體未知,為來自的簡單隨機樣本,求的極大似然估計.七、(10分)某生產車間隨機抽取9件同型號的產品進行直徑測量,得到結果,根據長期經驗,該產品的直徑服從正態分布,試求出該產品的直徑的置信度為0.95的置信區間(取到小數3位)八、(10分)設某商場的日營業額為X萬元,已知在正常情況下X服從正態分布五一前后五天營業額分別為:4.28、4.40、4.42、4.35、4.37(萬元)假設標準差不變,問五一期間是否顯著增加了商場的營業額(取)? 數理統計公式表及數據一正態總體均值、方差置信水平為的雙側置信區間待估參數其他參數置信區間已知未知未知二正態總體均

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論