2022年數學試卷質量分析_第1頁
2022年數學試卷質量分析_第2頁
2022年數學試卷質量分析_第3頁
2022年數學試卷質量分析_第4頁
2022年數學試卷質量分析_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、高品質文檔2022年數學試卷質量分析 一、試卷評閱的總體狀況 本學期文科類數學期末考試仍按現用全國五年制高等職業訓練公共課應用數學基礎教學,和省校下發的統一教學要求和復習指導可依據進行命題。經過閱卷后的質量分析,全省各教學點匯總,卷面及格率達到了54%,平均分54.1分,較前學期有很大的提高,答卷還消失了不少高分的學生,這與各教學點在師生的共同努力和省校統一的教學指導和管理是分不開的。為進一步加強教學管理,總結各教學點的教學閱歷不斷提高教學質量,現將本學期卷面考試的質量分析,發給各教學點,望各教學點以教研活動的方式,開展爭論、分析、總結教學,確保教學質量的穩步提高。 二、考試命題分析 1、命題

2、的基本思想和命題原則 命題與教材和教學要求為依據,緊扣教材第五章平面對量;第七章空間圖形;第八章直線與二次曲線的各學問點,同時留意到我省的教學實際學和學生的熟悉規律,注意與后繼課程的教學相連接。以各章的應知、應會的內容為重點,立足于基礎概念、基本運算、基礎學問和應用力量的考查。試卷整體的難易適中。 2、評分原則 評分總體上堅持寬嚴適度的原則,客觀性試題是填空及單項選擇,這部分試題條案是唯一的,得分統一。避開評分誤差。主觀性試題的評分原則是,以學問點、確題的基本思路和關鍵步驟為依據,分步評分,不重復扣分、最終累積得分。 三、試卷命題質量分析 以平面對量、直線與二次線為重點,占總分的70%左右,空

3、間圖形約占30%左右,基礎學問掩蓋面約占90%以上。試題容量填空題13題,20空,單選題6題,解答題三大題共8小題。兩小時內解答各題容量是足夠的,學問點的容量也較充分。 平面對量考查基本概念,向量的兩種表示方法,向量的線性運算,向量的數量積的兩種表示形式,與非零向量的共線條件,兩向量垂直與兩向量數量積之間的關系,試題分數約占35%左右。 直線與二次曲線考查,曲線與方程關系,各種直線方程及應用,二次曲線的標準方程及一般方程的應用,方程中參數的求解,各幾何要素的確定,試題分數約占35%左右。 空間圖形著重考查平面的基本性質、兩線的位置關系、兩面的位置關系、線面的位置關系、三垂線定理的應用、異面直線

4、所成的角、線面所成的角、距離計算等問題。表面積和體積的計算,為減輕學生負擔末列入試題中(但復習中仍要求應用表面積和體積公式),該部份試題分數約占30%。 三章考查重點放在平面對量、直線和二次曲線,其次是空間圖形部份。故考查的主次是分明的,符合高職公共課教學大綱的要求。 四、學生答卷質量分析 填空題:第1至3題考查向量的線性運算和位置向量的坐標線性運算,答對率約85%左右,其中大部份學生對書寫向量遺漏箭頭,部分學生將第3題的答案(-9,3)答成(9,-3)或(-9,-3)等。符號是不清晰的,反映出部份學生對向量的線性運算并非完全把握。 第47題涉及立體幾何問題,主要考查線面關系,面面關系。答對率

5、70%左右,其它學生主要是空間概念不清,不能確定線面間、平面間的位置關系。多數對異面直線的位置關系不清晰。 第813題涉及解析幾何的問題,考查曲線方程中的待定系數,直線方程,點到直線的距離問題,狀況尚好,答對率70%左右。第1113題反而答錯率占65%左右,主要反映出學生對各種二次曲線的標準方程混淆不清,對幾何要素的位置把握不好,突出表現在對二次曲線的幾何性質把握較差,不堅固。 單項選擇題:學生一般得分為1218分 第1題選對的占80%以上,學生對平面的基本性質中的公理及推論把握較好。第2題選對的占70%左右,學生對兩向量垂直與兩向量數量積之間的關系把握較好。答錯較多的是第4和第6題,其次是第

6、5題。第5題多數錯選(A)或(B),可見學生對一般圓方程用公式求圓心和半徑不熟識,同時用配方法化圓的一般方程為圓的標準方程,求圓心和半徑也把握不好。特殊是第4題平行坐標軸,坐標變換竟有33%的學生錯選(B)或不選(空白),可見不少學生對坐標軸平移引起坐標變換的新概念并不清晰,對新、舊坐標的概念也不清晰。第6題不少學生錯選(B),反映出學生對向量平行和垂直的條件混淆,推斷兩向量相等的條件也不明確,才會消失如此的錯誤。 第三題:(1)題是考查異面直線的成的角及長方體對角的計算。對本題的解答約80%的學生能找到異面直線A1C1與BC所成的角,但有30%40%的學生不習慣用反正切函數表示角度,反而用反

7、正弦或反余弦函數表示角度,教學中應引起跑的重視。計算長方體的對角線長僅有20%的學生會用簡捷方法“長方體的對角線的平方等于長、寬、高的平方和”。其余學生計算較繁瑣。 (2)題是考查證明三點共線問題。約有80%的學生采納不同的方法證明,有用解析法的,也有用向量法的,也有用平面幾何與解析幾何綜合學問證明的“三點連線中,兩線之和等于第三線則三點共線”,反映出各教學點對該問題給出了多種證明法和思路,值得提倡。 第(3)題考查依據不同的己知條件選用向量數量積的表達式。 第四題:1題主要考查動點的軌跡方程,學生的解答,多消失兩種方法,按軌跡滿意橢圓定義求解或按求軌跡方程的四大步驟求解,但解答中又消失不少錯

8、誤。第五題:1題是考查由給定雙曲線的條件求它的標準方程和漸近線方程,但不少學生將雙曲線中的參數a,b與隨圓中的參數a、b、c混為一談,對漸逐近線方程把握不好,不能依據漸逐線的位置,寫出漸近線的方程。 2題主要考查用向量法證明四邊形是矩形的方法,但不少學生隨心所意,反而用解析幾何的方法去證明,嚴格講這是錯誤的,應當引起重視。有的學生在證明中規律混亂,規律推理敘述不嚴密,在矩形的證明中,用“垂直證明垂直”。對向量的學問把握不堅固,求向量的坐標時,差值的挨次不對,導致計算錯誤。 第六題:本題是一道立體幾何題,主要考查的學問點一是兩平面垂直的性質,二是直線與平面所成的角。本題評閱結果,有近60%的考生

9、得滿分,這些學生是把握了考查的學問點,解題思路清楚,能快速地用兩平面垂直的性質,證明ABC和BDC是直角三角形,求出BC和CD后,又用三角函數計算CD與平面 所成的角。有的學生構造三角形思路敏捷,連接AD得直角ABD,在此三角形中求出AD,又在直角DAC中求出CD,最終在直角DBC中求出DC與平面 所成的角,即DCB。 在20%的學生錯答的緣由是找不準直角,把直角邊當成斜邊來計算,導致解答錯誤。有近20%的學生空間概念較差,交白卷,有的認為AB與CD是在一個平面上且相交,完全按平面幾何的學問來解答本題,如用全等三角形和相像三角形的學問來解,這是完全沒有空間概念的主要表現。 五、通過考試反饋的信息對今后教學的建議 通過以上考試命題,試卷質量,答卷質量,基本概況的綜合分析,實行統一命題,統一考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論