六西格瑪管理標準差_第1頁
六西格瑪管理標準差_第2頁
六西格瑪管理標準差_第3頁
六西格瑪管理標準差_第4頁
六西格瑪管理標準差_第5頁
已閱讀5頁,還剩6頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、 標準差(Standard Deviation) ,也稱均方差(mean square error),是各數據偏離平均數的距離的平均數,它是離均差平方和平均后的方根,用表示。標準差是方差的算術平方根。標準差能反映一個數據集的離散程度。平均數一樣的,標準差未必一樣。目錄簡介標準差的意義離散度1. 極差2. 離均差的平方和3. 方差(S2)4. 標準差(SD)5. 變異系數(CV)標準差與平均值之間的關系標準差公式1. 誤差條幾何學解釋標準差與標準誤的區別1. 標準差(standard deviation, STD)2. 標準誤(standard error, SE)Excel函數外匯術語樣本標準

2、差應用實例1. 選基金2. 股市分析中3. 標準差在確定企業最優資本結構中的應用簡介標準差的意義離散度1. 極差2. 離均差的平方和3. 方差(S2)4. 標準差(SD)5. 變異系數(CV)標準差與平均值之間的關系標準差公式1. 誤差條幾何學解釋標準差與標準誤的區別1. 標準差(standard deviation, STD)2. 標準誤(standard error, SE)Excel函數· 外匯術語· 樣本標準差· 應用實例1. 選基金2. 股市分析中3. 標準差在確定企業最優資本結構中的應用展開編輯本段簡介標準差(Standard Deviation),在

3、概率統計中最常使用作為統計分布程度(statistical dispersion)上的測量。標準差定義為方差的算術平方根,反映組個體間的離散程度。測量到分布程度的結果,原則上具有兩種性質: 為非負數值, 與測量資料具有一樣單位。 一個總量的標準差或一個隨機變量的標準差,與一個子集合樣品數的標準差之間,有所差別。 標準計算公式 假設有一組數值X1,X2,X3,.Xn(皆為實數),其平均值為:   . 此組數值的標準差為如圖所示 .   公式標準差也被稱為標準偏差,或者實驗標準差,公式如圖。 簡單來說,標準差是一組數據平均值分散程度的一種度量。一個較大的標準

4、差,代表大部分數值和其平均值之間差異較大;一個較小的標準差,代表這些數值較接近平均值。 例如,兩組數的集合 0, 5, 9, 14 和 5, 6, 8, 9 其平均值都是 7 ,但第二個集合具有較小的標準差。 標準差可以當作不確定性的一種測量。例如在物理科學中,做重復性測量時,測量數值集合的標準差代表這些測量的精確度。當要決定測量值是否符合預測值,測量值的標準差占有決定性重要角色:如果測量平均值與預測值相差太遠(同時與標準差數值做比較),則認為測量值與預測值互相矛盾。這很容易理解,因為如果測量值都落在一定數值圍之外,可以合理推論預測值是否正確。 標準差應用于投資上,可作為量度回報穩定性的指標。

5、標準差數值越大,代表回報遠離過去平均數值,回報較不穩定故風險越高。相反,標準差數值越細,代表回報較為穩定,風險亦較小。 例如,A、B兩組各有6位學生參加同一次語文測驗,A組的分數為95、85、75、65、55、45,B組的分數為73、72、71、69、68、67。這兩組的平均數都是70,但A組的標準差為18.708分,B組的標準差為2.37分(此數據時在R統計軟件中運行獲得),說明A組學生之間的差距要比B組學生之間的差距大得多。 如是總體,標準差公式根號除以n 如是樣本,標準差公式根號除以(n-1) 因為我們大量接觸的是樣本,所以普遍使用根號除以(n-1)公式意義 所有數減去其平均值的平方和,

6、所得結果除以該組數之個數(或個數減一),再把所得值開根號,所得之數就是這組數據的標準差。 編輯本段標準差的意義標準差越高,表示實驗數據越離散,也就是說越不精確。 反之,標準差越低,代表實驗的數據越精確。 編輯本段離散度標準差是反應一組數據離散程度最常用的一種量化形式,是表示精密確的重要指標。說起標準差首先得搞清楚它出現的目 的。我們使用方法去檢測它,但檢測方法總是有誤差的,所以檢測值并不是其真實值。檢測值與真實值之間的差距就是評價檢測方法最有決定性的指標。但是真實值 是多少,不得而知。因此怎樣量化檢測方法的準確性就成了難題。這也是臨床工作質控的目的:保證每批實驗結果的準確可靠。 雖然樣本的真實

7、值是不可能知道的,但是每個樣本總是會有一個真實值的,不管它究竟是多少。可以想象,一個好的檢測方法,基檢測值應該很緊密的分散在真實值周圍。如何不緊密,那距真實值的就會大,準確性當然也就不好了,不可能想象離散度大的方法,會測出準確的結果。因此,離散度是評價方法的好壞的 最重要也是最基本的指標。 一組數據怎樣去評價和量化它的離散度呢?人們使用了很多種方法: 極差最直接也是最簡單的方法,即最大值最小值(也就是極差)來評價一組數據的離散度。這一方法在日常生活中最為常見,比如比賽中去掉最高最低分就是極差的具體應用。 離均差的平方和由于誤差的不可控性,因此只由兩個數據來評判一組數據是不科學的。所以人們在要求

8、更高的領域不使用極差來評判。其實,離散度就是數據偏離平均值的程度。因此將數據與均值之差(我們叫它離均差)加起來就能反映出一個準確的離散程度。和越大離散度也就越大。 但是由于偶然誤差是成正態分布的,離均差有正有負,對于大樣本離均差的代數和為零的。為了避免正負問題,在數學有上有兩種方法:一種是取絕對 值,也就是常說的離均差絕對值之和。而為了避免符號問題,數學上最常用的是另一種方法平方,這樣就都成了非負數。因此,離均差的平方和成了評價離散度 一個指標。 方差(S2)由于離均差的平方和與樣本個數有關,只能反應一樣樣本的離散度,而實際工作中做比較很難做到一樣的樣本,因此為了消除樣本個數的影響,增加可比性

9、,將標準差求平均值,這就是我們所說的方差成了評價離散度的較好指標。 樣本量越大越能反映真實的情況,而算數均值卻完全忽略了這個問題,對此統計學上早有考慮,在統計學中樣本的均差多是除以自由度(n-1),它的意思是樣本能自由選擇的程度。當選到只剩一個時,它不可能再有自由了,所以自由度是n-1。 標準差(SD)由于方差是數據的平方,與檢測值本身相差太大,人們難以直觀的衡量,所以常用方差開根號換算回來這就是我們要說的標準差。 在統計學中樣本的均差多是除以自由度(n-1),它是意思是樣本能自由選擇的程度。當選到只剩一個時,它不可能再有自由了,所以自由度是n-1。 變異系數(CV)標準差能很客觀準確的反映一

10、組數據的離散程度,但是對于不同的檢目,或同一項目不同的樣本,標準差就缺乏可比性了,因此對于方法學評價來說又引入了變異系數CV。 編輯本段標準差與平均值之間的關系一組數據的平均值與標準差常常同時做為參考的依據。在直覺上,如果數值的中心以平均值來考慮,則標準差為統計分布之一“自然”的測量。 定義公式:  標準差與平均值定義公式編輯本段標準差公式1、方差s2=(x1-x)2+(x2-x)2+.(xn-x)2/n 2、標準差=方差的算術平方根 誤差條error bar。在實驗中單次測量總是難免會產生誤差,為此我們經常測量多次,然后用測量值的平均值表示測量的量,并用誤差條來表征數據的

11、分布,其中誤差條的高度為±標準誤。這里即標準差standard deviation和標準誤satandard error 的計算公式分別為   標準差  標準誤編輯本段幾何學解釋從幾何學的角度出發,標準差可以理解為一個從 n 維空間的一個點到一條直線的距離的函數。舉一個簡單的例子,一組數據中有3個值,X1,X2,X3。它們可以在3維空間中確定一個點 P = (X1,X2,X3)。想像一條通過原點的直線 。如果這組數據中的3個值都相等,則點 P 就是直線 L 上的一個點,P 到 L 的距離為0, 所以標準差也為0。若這3個值不都相等,過點 P 作

12、垂線 PR 垂直于 L,PR 交 L 于點 R,則 R 的坐標為這3個值的平均數:   公式運用一些代數知識,不難發現點 P 與點 R 之間的距離(也就是點 P 到直線 L 的距離)是。在 n 維空間中,這個規律同樣適用,把3換成 n 就可以了。 編輯本段標準差與標準誤的區別標準差與標準誤都是心理統計學的容,兩者不但在字面上比較相近,而且兩者都是表示距離某一個標準值或中間值的離散程度,即都表示變異程度,但是兩者是有著較大的區別的。 首先要從統計抽樣的方面說起。現實生活或者調查研究中,我們常常無法對某類欲進行調查的目標群體的所有成員都加以施測,而只能夠在所有成員(即樣本)中抽

13、取一些成員出來進行調查,然后利用統計原理和方法對所得數據進行分析,分析出來的數據結果就是樣本的結果,然后用樣本結果推斷總體的情況。一個總體可以抽取出多個樣本,所抽取的樣本越多,其樣本均值就越接近總體數據的平均值。 標準差(standard deviation, STD)表示的就是樣本數據的離散程度。標準差就是樣本平均數方差的開平方,標準差通常是相對于樣本數據的平均值而定的,通常用M±SD來表示,表示樣本某個數據觀察值相距平均值有多遠。從這里可以看到,標準差收到極值的影響。標準差越小,表明數據越聚集;標準差越大,表明數據越離散。標準差的大小因測驗而定,如果一個測驗是學術測驗,標準差大,

14、表示學生分數的離散程度大,更能夠測量出學生的學業水平;如果一個側樣測量的是某種心理品質,標準差小,表明所編寫的題目是同質的,這時候的標準差小的更好。標準差與正態分布有密切聯系:在正態分布中,1個標準差等于正態分布下曲線的68.26%的面積,1.96個標準差等于95%的面積。這在測驗分數等值上有重要作用。 標準誤(standard error, SE)表示的是抽樣的誤差。因為從一個總體中可以抽取出無數多種樣本,每一個樣本的數據都是對總體的數據的估計。標準誤代表的就是當前的樣本對總體數據的估計,標準誤代表的就是樣本均數與總體均數的相對誤差。標準誤是由樣本的標準差除以樣本人數的開平方來計算的。從這里

15、可以看到,標準誤更大的是受到樣本人數的影響。樣本人數越大,標準誤越小,那么抽樣誤差就越小,就表明所抽取的樣本能夠較好地代表樣本。 編輯本段Excel函數關于這個函數在EXCEL中的STDEVP函數有詳細描述,EXCEL中文版里面就是用的“標準偏差”字樣。但我國的中文教材等通常還是使用的是“標準差”。 在EXCEL中STDEVP函數是另外一種標準差,也就是總體標準差。在繁體中文的一些地方可能叫做“母體標準差” 在R統計軟件中標準差的程序為: sum(x-mean(x)2)/(length(x)-1)編輯本段外匯術語標準差指統計上用于衡量一組數值中某一數值與其平均值差異程度的指標。標準差被用來評估

16、價格可能的變化或波動程度。標準差越大,價格波動的圍就越廣,股票等金融工具表現的波動就越大。 在excel中調用函數 “STDEV“ 估算樣本的標準偏差。標準偏差反映相對于平均值 (mean) 的離散程度。 編輯本段樣本標準差在真實世界中,除非在某些特殊情況下,不然找到一個總體的真實的標準差是不現實的。大多數情況下,總體標準差是通過隨機抽取一定量的樣本并計算樣本標準差估計的。 編輯本段應用實例選基金在投資基金上,一般人比較重視的是業績,但往往買進了   基金的算法近期業績表現最佳的基金之后,基金表現反而不如預期,這是因為所選基金波動度太大,沒有穩定的表現。 衡量基金波動程度的

17、工具就是標準差(Standard Deviation)。標準差是指基金可能的變動程度。標準差越大,基金未來凈值可能變動的程度就越大,穩定度就越小,風險就越高。 比方說,一年期標準差是30%的基金,表示這類基金的凈值在一年可能上漲30%,但也可能下跌30%。因此,如果有兩只收益率一樣的基金,投資人應該選擇標準差較小的基金(承受較小的風險得到一樣的收益),如果有兩只一樣標準差的基金,則應該選擇收益較高的基金(承受一樣的風險,但是收益更高)。建議投資人同時將收益和風險計入,以此來判斷基金。例如,A基金二年期的收益率為36%,標準差為18%;B基金二年期收益率為24%,標準差為8%,從數據上看,A基金

18、的收益高于B基金,但同時風險也大于B基金。A基金的"每單位風險收益率"為2(0.36/0.18),而B基金為3(0.24/0.08)。因此,原先僅僅以收益評價是A基金較優,但是經過標準差即風險因素調整后,B基金反而更為優異。 另外,標準差也可以用來判斷基金屬性。據晨星統計,今年以來股票基金的平均標準差為5.14,積配型基金的平均標準差為5.04;保守配置型基金的平均標準差為4.86;普通債券基金平均標準差為2.91;貨幣基金平均標準差則為0.19;由此可見,越是積極型的基金,標準差越大;而如果投資人持有的基金標準差高于平均值,則表示風險較高,投資人不妨在觀賞奧運比賽的同時,

19、也檢視一下手中的基金。 股市分析中股票價格的波動是股票市場風險的表現,因此股票市場風險分析就是對股票市場價格波動進行分析。波動性代表了未來價格取值的不確定性,這種不確定性一般用方差或標準差來刻畫(Markowitz,1952)。下表是中國和美國部分時段的股票統計指標,其中中國證券市場的數據由“錢龍”軟件下載,美國證券市場的數據取自ECI的“World Stock Exchange Data Disk”。 表2股票統計指標 年份業績表現波動率 上證綜指標準普爾指數上證綜指標準普爾指數 1996110.9316.460.2376O.0573 1997-0.1331.01O.1188O.0836 1

20、9988.9426.67O.0565O.0676 199917.2419.53O.15120.0433 200043.86-10.140.0970.0421 2001-15.34-13.04O.0902O.0732 2002-20.82-23.37O.0582O.1091 通過計算可以得到: 上證綜指業績期望值(110.93-0.13+8.94+17.24+43.86-15.34-20.82)/7=20.67 上證波動率期望值0.1156 標準普爾業績期望值6.7214 標準普爾波動率期望值0.0680 而標準差的計算公式則根據公   分析圖2式(2)計算: 上證綜指的業績

21、標準差 上證波動率標準差0.0632 標準普爾指數業績標準差21.71 標準普爾波動率標準差0.02365 因為標準差是絕對值,不能通過標準差對中美直接進行對比,而變異系數可以直接比較。計算可得: 上證業績變異系數45.2457/20.6721889 上證波動率變異系數0.0632/0.11560.5467 標準普爾業績變異系數21.71/6.72143.2299 標準普爾波動率變異系數0.02365/0.06800.3478 通過比較可以看出上證波動率變異系數要大于標準普爾波動率變異系數,說明長期來講中國股市穩定性相對較差,還是一個不太成熟的股票市場。 標準差在確定企業最優資本結構中的應用資

22、本結構指的是企業各種資金來源的比例關系,是企業籌資活動的結果。最優資本結構是指能使企業資本成本最低且企業價值最大的資本結構;產權比率,即借入資本與自有資本的構成比例,是反映企業資本結構的重要變量。企業的資產由債務性資金和權益性資金組成,但其   分析圖風險等級和收益率各不一樣。根據投資組合理論,投資的多樣化可以分散掉一定的風險,因此資金提供者需要決定投資于債務性資金和權益性資金的比例。以便在權衡風險和收益的情況下保證其利益的最大化。 理論探索而外部資金提供者利益的最大化也就是企業價值的最大化,這一投資比例對于企業融資而言也就是企業的最優資本結構比例。 假定某企業的資金通過發

23、行債券和股票兩種方式獲得,并且都屬于風險性資產。其中債券的收益率為rD,風險通過標準差D來衡量;股票的收益率為rE,風險為E;股票和債券的相關系數為pDE,協方差為COV(rD,rE);債券所占的比重為wD,股票所占比重為WE(WD + WE = 1)。根據投資組合理論,企業外部投資者對該企業投資所獲的期望收益率為E(rp) = WDE(rD) + wEE(rE),方差為   方差1、企業債務性資金和權益性資金完全正相關,即相關系數pDE為1。企業外部投資者獲得的期望收益率為E(rp) = wDE(rD) + wEE(rE),風險標準差為 = wDD + wEE,也就是組合的標準差等于各個部分標準差的加權平均值,通過投資組合不可能分散掉投資風險。根據投資組合理論,投資組合的不同比例對于投資者而言是無差異的。 2、企業債務性資金和權益性資金完全負相關,即其相關系數為-1。投資者獲得的報酬率的期望值與其方差分別為。根據投資組合理論,只有當投資比例大于E / (D + E)時其投資組合才是有效的。對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論