數據挖掘試驗報告_第1頁
數據挖掘試驗報告_第2頁
數據挖掘試驗報告_第3頁
數據挖掘試驗報告_第4頁
數據挖掘試驗報告_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、數據挖掘實驗報告實驗序號:實驗項目名稱:C4.5算法學號姓名專業、班12數學金融實驗地點實驗樓5-510指導教師潘巍巍實驗時間2014.12.24一、實驗目的及要求1:選擇一個數據挖掘標準數據集,采用C4.5算法進行分類,給出分類精度,畫出用C4.5算法誘導的樹并寫出生成的規則集合。2:在數據挖掘標準數據集上,實驗對比剪枝與未剪枝的樹的分類性能。3:總結C4.5算法的優缺點二、實驗設備(環境)及要求電腦WEKA 3.6.1三、實驗內容與步驟(3)數據分類(c4.5算法實現)1.導入數據丹1蘆価=AjHGjii-tfiy百irgir西Crast1y5243TtiTQT亍DLbULJ-Ct 1ff

2、nsul% 葉0 tt)Slftvor: -stillsHEHiHtlc 0帕llirrBLt Fdlflt3KnjLcati E va-kduz EjiTiboliEIn&iafictfr 14iLttribales 5SfilFet* 3.itFlbE0l*(2)選擇C4.5分類器進行分類結果為fQ Weka Explorer1=1 |1Pri-proccKS -laESi fy Cluster JkssaciH-teitiributx Vi snislizie-Status_OK “IEx 0其中分類精度為50%生成的決策樹為outook=a uh nr - CNe rcasf帕

3、勲 4.即也 (3 0)一TRUEoutlook = sunny| humidity = high: no (3.0)| humidity = normal: yes (2.0)outlook = overcast: yes (4.0) outlook= rainy| win dy = TRUE: no (2.0)| wi ndy = FALSE: yes (3.0)剪枝后結果為分類規則:J48 pruned treenumMit/匕nigh - rormarTijjj WfScfiC 占網ifr r呼PW中-汗脫的1十尸“TI)a分類精度變為57.1%性能變好(1)C4.5算法優缺點優點:分

4、類精度高,生成的分類規則比較簡單,易于理解。缺點:需要多次掃描數據集,比較低效五、分析與討論六、教師評語QWeks Explof-er| n | | S3Pr -pr-*riiBKClfiSSl Ers a i: k s ta.1 tp VBII&BIIEXBStitLii成績簽名:日期:數據挖掘實驗報告實驗序號:實驗項目名稱:KNh算法、實驗目的及要求KNN算法的基本思路、步驟。選擇UCI中的5個標準數據集,使用KNN算法在該數據集上計算混淆矩陣。選擇2個數據集,選擇不同的k值,k=1,3,5,7,9,對比KNN算法計算結果的差異。、實驗設備(環境)及要求電腦WEKA 3.6.1四、

5、實驗內容與步驟1.數據集contact-lenses.arffGlass.arff兩者的混淆矩陣分別為=Confusion Mate!暮=a b c - cla-ssified耳孕2121 a - scsfi:1 2 1 I b = hard專業、班12數學金融實驗地點實驗樓5-510指導教師潘巍巍實驗時間2014.12.2440 11 I nonef = tableware g = headidwaEL5Sbgcd0e0f0g01S 5140321$a5Q000000Q0000200id0101001700亍0021冇classified asEL buildwindfloatb build

6、windnan-floatc =vetiicwindSloatd =vehlcwindnan-floateMatrix(2)兩個數據集在K=1,3,5,7,9下結果分別為Glass:K=1;=Summary =Correctly Classified In sta nces151In correctly Classified In sta nces63Kappa statistic0.6005Mea n absolute error0.0897Root mean squared error0.2852Relative absolute error42.3747 %Root relative s

7、quared error87.8627 %Total Number of In sta nces214=Detailed Accuracy By Class =TP RateFP RatePrecisi onRecallF-MeasureROC AreaClass0.7860.1670.6960.7860.7380.806build wind float0.6710.130.7390.6710.7030.765build wi ndnon-float0.2940.0510.3330.2940.3130.59vehic wind float00000?vehic wi ndnon-float0.

8、7690.030.6250.7690.690.895containers0.7780.0150.70.7780.7370.838tableware0.7930.0110.920.7930.8520.884headlampsWeighted Avg.0.7060.1090.7090.7060.7040.792=Con fusi on Matrix =abcdefg-classified as55960000 1a=build wind float15 5140321 1b =build wind non-float9350000 1c :=vehic wind float0000000 1d=v

9、ehic wind non-float0200 1001 |e = =containers0100170 1f =:tableware030021 23 |g =headlampsK=3;=Summary =70.5607 %29.4393 %Correctly Classified In sta nces Incorrectly Classified In sta nces Kappastatistic154600.609771.9626 %28.0374 %Mea n absolute error0.0983Root mean squared error0.2524Relative abs

10、olute error46.4438 %Root relative squared error77.7792 %Total Number of In sta nces214=Detailed Accuracy By Class =TP RateFP RatePrecisi onRecallF-MeasureROC AreaClass0.8430.2150.6560.8430.7380.865buildwind float0.7110.1380.740.7110.7250.835buildwind non-float0.1760.0150.50.1760.2610.672vehic windfl

11、oat00000?vehicwind non-float0.6150.0150.7270.6150.6670.913containers0.7780.010.7780.7780.7780.914tableware0.7930.0110.920.7930.8520.885headlampsWeighted Avg.0.720.1230.7180.720.7080.847=Con fusi on Matrix =abcdefg-classified as59 1010000 1a : =build wind float19 5420100 1b : =build wind non-float104

12、30000 1c=vehic wind float0000000 1d : =vehic wind non-float0300802 |e : =containers0100170 1f =:tableware210012 23 |g :=headlampsK=5;=Summary =Correctly Classified In sta nces14567.757 %In correctly Classified In sta nces6932.243 %Kappa statistic0.5469Mea n absolute error0.1085Root mean squared erro

13、r0.2563Relative absolute error51.243 %Root relative squared error78.9576 %Total Number of In sta nces214=Detailed Accuracy By Class =TP Rate FP Rate Precisi on Recall F-Measure ROC Area Class0.8430.2290.6410.8430.7280.867build wind float0.6840.174build wind non-float0.6840.6840.6840.84800.01 0000.64

14、2vehic wind float00 000?vehic wind non-float0.3850.0250.50.3850.4350.952containers0.6670.010.750.6670.7060.909tableware0.7930.0160.8850.7930.8360.89headlampsWeighted Avg. 0.6780.1420.6350.6780.6510.853=Con fusi on Matrix =a b c d e f g - classified as59 10 1 0 0 0 0 | a = build wi nd float20 52 1 0

15、3 0 0 | b = build wind non-float12 5 0 0 0 0 0 | c = vehic wind float0 0 0 0 0 0 0 | d = vehic wi nd non-float0 5 0 0 5 0 3 | e = con tai ners0 2 0 0 1 6 0 | f = tableware1 2 0 0 1 2 23 | g = headlampsK=7;= Summary =Correctly Classified In sta nces13764.0187 %In correctly Classified In sta nces7735.

16、9813 %Kappa statistic0.4948Mean absolute error0.1147Root mean squared error0.2557Relative absolute error54.1689%Root relative squared error78.7876 %Total Number of In sta nces214=Detailed Accuracy By Class =TP Rate FP Rate Precisi on Recall F-Measure ROC Area Class0.8290.2710.5980.8290.6950.876build

17、 wind float0.6050.181build wind non-float0.6480.6050.6260.8520.0590.0050.50.0590.1050.71vehic wind float00 000?vehic wind non-float0.3080.030.40.3080.3480.939containers0.5560.0150.6250.5560.5880.976tableware0.7930.0160.8850.7930.8360.89headlampsWeighted Avg. 0.640.1580.6360.640.6170.864=Con fusi on

18、Matrix =a b c d e f g - classified as58 11 1 0 0 0 0 | a = build wi nd float26 46 0 0 4 0 0 | b = build wind non-float11 5 1 0 0 0 0 | c = vehic wind float0 0 0 0 0 0 0 | d = vehic wi nd non-float0 5 0 0 4 1 3 | e = con tai ners1 2 0 0 1 5 0 | f = tableware1 2 0 0 1 2 23 | g = headlampsK=9;=Summary

19、=Correctly Classified In sta nces Incorrectly Classified In sta nces Kappastatistic(Mean absolute error Root meansquared error Relative absolute errorRoot relative squared error TotalNumber of In sta nces =Detailed Accuracy By Class =a b c d e f g - classified as58 11 1 0 0 0 0 | a = build wi nd flo

20、at0.8290.2780.5920.8290.690.881build wind float0.6450.1740.6710.6450.6580.853build wind non-float00.0050 000.694vehic wind float00 (0 00?vehic wind non-float0.2310.030.3330.2310.2730.933containers0.2220.0150.40.2220.2860.964tableware0.7930.0270.8210.7930.8070.888headlampsWeighted Avg.0.6310.1590.580

21、.6310.5970.864=Con fusi on Matrix =63.0841 %36.9159 %135.790.47820.11960.258156.4924 %79.5178 %TP RateClassFP RatePrecisi on RecallF-Measure ROC Area23 49 0 0 3 10| b=build wind non-float13 4 0 0 0 00 |c : =vehic wind float0 0 0 0 0 00 |d =:vehic wind non-float0 6 0 0 3 04 |e = :containers3 1 0 0 2

22、21 |f = tableware1 2 0 0 1 2 23 |g : =headlampscon tact-le nses:K=1;=Summary =Con fusi on Matrix =-classified as a = soft b = hard2 12 |c = noneCorrectly Classified In sta nces1979.1667 %In correctly Classified In sta nces20.8333 %Kappa statistic0.6262Mea n absolute error0.2262Root mea n squared err

23、or0.3165Relative absolute error59.8856 %Root relative squared error72.4707 %Total Number of In sta nces24=Detailed Accuracy By Class =Weighted Avg.TP RateFP RatePrecisi onRecallF-MeasureROC AreaClass0.80.0530.80.80.80.958soft0.750.10.60.750.6670.925hard0.80.2220.8570.80.8280.896none0.7920.1670.8020.

24、7920.7950.914K=3;=Summary =Correctly Classified In sta nces Incorrectly Classified In sta nces Kappastatistic(Mean absolute error Root meansquared error Relative absolute errorRoot relative squared error TotalNumber of In sta nces19.50.62620.22620.316559.8856 %72.4707 %2479.1667 %20.8333 %=Detailed

25、Accuracy By Class =Recall F-Measure ROC AreaClass0.80.0530.80.80.80.958soft0.750.10.60.750.6670.925hard0.80.2220.8570.80.8280.896noneWeighted Avg.0.7920.1670.8020.7920.795TP Rate FP Rate Precision0.914=Con fusi on Matrix =a401b c - classified as0 1 | a = soft3 1 | b = hard212 | c = noneK=5;=Summary

26、=Correctly Classified In sta nces Incorrectly Classified In sta nces Kappastatistic(Mean absolute errorRoot mea n squared error16. 80.33560.27930.362466.6667 %33.3333 %Relative absolute error73.9227 %Root relative squared error82.9705 %Total Number of In sta nces24=Detailed Accuracy By Class=TP Rate

27、 FP Rate Precisio n Recall F-MeasureROC AreaClass0.60.0530.750.60.6670.947soft0.250.10.3330.250.2860.856hard0.80.5560.7060.80.750.859noneWeighted Avg. 0.6670.3750.6530.6670.6550.877=Con fusi on Matrix =a b c - classified as3 0 2 | a = soft0 1 3 | b = hardK=7;= Summary =Correctly Classified In sta nces1458.3333 %In correctly Classified In sta nces1041.6667 %Kappa statistic-0.0619Mean absolute error0.3188Root mean squared error0.387Relative absolute error84.3959 %Root relative squared error88

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論