初一數學上冊個人教案5篇_第1頁
初一數學上冊個人教案5篇_第2頁
初一數學上冊個人教案5篇_第3頁
初一數學上冊個人教案5篇_第4頁
初一數學上冊個人教案5篇_第5頁
已閱讀5頁,還剩8頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、初一數學上冊個人教案5篇 充分利用多媒體教學,創新數學教學方式、方法要適應課標理念的發展、變化。你知道七年級數學教案的寫法?不妨寫一篇和我們分享。你是否在找正準備撰寫“初一數學上冊個人教案”,下面我收集了相關的素材,供大家寫文參考! #447232初一數學上冊個人教案1 教學目標 1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算; 2. 通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想; 3.通過加法運算練習,培養學生的運算能力。 教學建議 (一)重點、難點分析 本節課的重點是依據運算法則和運算律準確迅速地進行,難點是省略加號與括號的代數和的計算. 由

2、于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,這是因為有理數加、減混合算式都看成和式,就可靈活運用加法運算律,簡化計算. (二)知識結構 (三)教法建議 1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正. 2.關于“去括號法則”,只要學生了解,并不要求追究所以然. 3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。

3、這時,稱這個和式為代數和。再例如 -3-4表示-3、-4兩數的代數和, -4+3表示-4、+3兩數的代數和, 3+4表示3和+4的代數和 等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。 4.先把正數與負數分別相加,可以使運算簡便。 5.在交換加數的位置時,要連同前面的符號一起交換。如 12-5+7 應變成 12+7-5,而不能變成12-7+5。 #447226初一數學上冊個人教案2 教學目的 借助“線段圖”分析復雜的行程問題中的數量關系,從而建立方程解決實際問題,發展分析問題,解決問題的能力,進一步體會方程模型的作用。 重點、難點 1.重點:列一元一次方程解決有關行程問

4、題。 2.難點:間接設未知數。 教學過程 一、復習 1.列一元一次方程解應用題的一般步驟和方法是什么? 2.行程問題中的基本數量關系是什么? 路程=速度×時間 速度=路程 / 時間 二、新授 例1.小張和父親預定搭乘家門口的公共汽車趕往火車站,去家鄉看望爺爺,在行駛了三分之一路程后,估計繼續乘公共汽車將會在火車開車后半小時到達火車站,隨即下車改乘出租車,車速提高了一倍,結果趕在火車開車前15分鐘到達火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠? 畫“線段圖”分析, 若直接設元,設小張家到火車站的路程為x千米。 1.坐公共汽車行了多少路程?乘的士行了多少路程?

5、2.乘公共汽車用了多少時間,乘出租車用了多少時間? 3.如果都乘公共汽車到火車站要多少時間? 4,等量關系是什么? 如果設乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。 可設公共汽車從小張家到火車站要x小時。 設未知數的方法不同,所列方程的復雜程度一般也不同,因此在設未知數時要有所選擇。 三、鞏固練習 教科書第17頁練習1、2。 四、小結 有關行程問題的應用題常見的一個數量關系:路程=速度×時間,以及由此導出的其他關系。如何選擇設未知數使方程較為簡單呢?關鍵是找出較簡捷地反映題目全部含義的等量關系,根據這個等量關系確定怎樣設未知數。

6、四、作業 教科書習題6.3.2,第1至5題。 #447227初一數學上冊個人教案3 教學目的 1.理解用一元一次方程解工程問題的本質規律;通過對“工程問題”的分析進一步培養學生用代數方法解決實際問題的能力。 2.理解和掌握基本的數學知識、技能、數學思想方法,獲得廣泛的數學活動經驗,提高解決問題的能力。 重點、難點 重點:工程中的工作量、工作的效率和工作時間的關系。 難點:把全部工作量看作“1”。 教學過程 一、復習提問 1.一件工作,如果甲單獨做2小時完成,那么甲獨做I小時完成全 部工作量的多少? 2.一件工作,如果甲單獨做。小時完成,那么甲獨做1小時,完成 全部工作量的多少? 3.工作量、工

7、作效率、工作時間之間有怎樣的關系? 二、新授 閱讀教科書第18頁中的問題6。 分析:1.這是一個關于工程問題的實際問題,在這個問題中,已經知道了什么? 已知:制作一塊廣告牌,師傅單獨完成需4天,徒弟單獨做要6天。 2.怎樣用列方程解決這個問題?本題中的等量關系是什么? 等量關系是:師傅做的工作量+徒弟做的工作量=1) 先要求出師傅與徒弟各完成的工作量是多少? 兩人的工效已知,因此要先求他們各自所做的天數,因此,設師傅做了x天,則徒弟做(x+1)天,根據等量關系列方程。 解方程得 x=2 師傅完成的工作量為= ,徒弟完成的工作量為= 所以他們兩人完成的工作量相同,因此每人各得225元。 三、鞏固

8、練習 一件工作,甲獨做需30小時完成,由甲、乙合做需24小時完成,現 由甲獨做10小時; 請你提出問題,并加以解答。 例如 (1)剩下的乙獨做要幾小時完成? (2)剩下的由甲、乙合作,還需多少小時完成? (3)乙又獨做5小時,然后甲、乙合做,還需多少小時完成? 四、小結 1.本節課主要分析了工作問題中工作量、工作效率和工作時間之 間的關系,即 工作量=工作效率×工作時間 工作效率= 工作時間= 2.解題時要全面審題,尋找全部工作,單獨完成工作量和合作完成工作量的一個等量關系列方程。 五、作業 教科書習題6.3.3第1、2題。 #447228初一數學上冊個人教案4 教學目的 讓學生通過

9、獨立思考,積極探索,從而發現;初步體會數形結合思想的作用。 重點、難點 1.重點:通過分析圖形問題中的數量關系,建立方程解決問題。 2.難點:找出“等量關系”列出方程。 教學過程 一、復習提問 1.列一元一次方程解應用題的步驟是什么? 2.長方形的周長公式、面積公式。 二、新授 問題3.用一根長60厘米的鐵絲圍成一個長方形。 (1)使長方形的寬是長的專,求這個長方形的長和寬。 (2)使長方形的寬比長少4厘米,求這個長方形的面積。 (3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的長方形嗎? 不是每道應用題都是直接設元,要認真分析題意,找出能表示整個題意的等量關系,再根據這個等

10、量關系,確定如何設未知數。 (3)當長方形的長為18厘米,寬為12厘米時 長方形的面積=18×12=216(平方厘米) 當長方形的長為17厘米,寬為13厘米時 長方形的面積=221(平方厘米) (1)中的長方形面積比(2)中的長方形面積小。 問:(1)、(2)中的長方形的長、寬是怎樣變化的?你發現了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的面積有什么變化?猜想寬比長少多少時,長方形的面積呢?并加以驗證。 實際上,如果兩個正數的和不變,當這兩個數相等時,它們的積,通過以后的學習,我們就會知道其中的道理。 三、鞏固練習 教科書第14頁練習1、2

11、。 第l題等量關系是:圓柱的體積=長方體的體積。 第2題等量關系是:玻璃杯中的水的體積十瓶內剩下的水的體積=原來整瓶水的體積。 四、小結 運用方程解決問題的關鍵是抓住等量關系,有些等量關系是隱藏的,不明顯,要聯系實際,積極探索,找出等量關系。 五、作業 教科書第16頁,習題6.3.1第1、2、3。 #447229初一數學上冊個人教案5 教學目標 1.使學生正確理解數軸的意義,掌握數軸的三要素; 2.使學生學會由數軸上的已知點說出它所表示的數,能將有理數用數軸上的點表示出來; 3.使學生初步理解數形結合的思想方法. 教學重點和難點 重點:初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點

12、表示有理數. 難點:正確理解有理數與數軸上點的對應關系. 課堂教學過程 設計 一、從學生原有認知結構提出問題 1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎? 2.用“射線”能不能表示有理數?為什么? 3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢? 待學生回答后,教師指出,這就是我們本節課所要學習的內容數軸. 二、講授新課 讓學生觀察掛圖放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10;在0下5個刻度,表示-5. 與溫度計類似,我

13、們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫): 1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0); 2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0以上為正,0以下為負); 3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3, 提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數) 在此基礎上,給

14、出數軸的定義,即規定了原點、正方向和單位長度的直線叫做數軸. 進而提問學生:在數軸上,已知一點P表示數-5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢? 通過上述提問,向學生指出:數軸的三要素原點、正方向和單位長度,缺一不可. 三、運用舉例 變式練習 例1 畫一個數軸,并在數軸上畫出表示下列各數的點: 例2 指出數軸上A,B,C,D,E各點分別表示什么數. 課堂練習 示出來. 2.說出下面數軸上A,B,C,D,O,M各點表示什么數? 最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零

15、用原點表示. 四、小結 指導學生閱讀教材后指出:數軸是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法. 本節課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究. 五、作業 1.在下面數軸上: (1)分別指出表示-2,3,-4,0,1各數的點. (2)A,H,D,E,O各點分別表示什么數? 2.在下面數軸上,A,B,C,D各點分別表示什么數? 3.下列各小題先分別畫出數軸,然后在數軸上畫出表示大括號內的一組數的點: (1)-5,2,-1,-3,0; (2)-4,2.5,-1.5,3.5; 課堂教

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論