




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
雅安市重點中學2024-2025學年初三5月聯合調研數學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列所給的汽車標志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.2.如圖,四個有理數在數軸上的對應點M,P,N,Q,若點M,N表示的有理數互為相反數,則圖中表示絕對值最小的數的點是()A.點M B.點N C.點P D.點Q3.如圖所示,的頂點是正方形網格的格點,則的值為()A. B. C. D.4.在平面直角坐標系中,將拋物線繞著它與軸的交點旋轉180°,所得拋物線的解析式是().A. B.C. D.5.﹣18的倒數是()A.18 B.﹣18 C.- D.6.二次函數的圖象如圖所示,則一次函數與反比例函數在同一坐標系內的圖象大致為()A. B. C. D.7.計算tan30°的值等于()A.3B.33C.338.用加減法解方程組時,如果消去y,最簡捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣① D.②×2+①9.《九章算術》是我國古代數學的經典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據題意得()A.B.C.D.10.△ABC在網絡中的位置如圖所示,則cos∠ACB的值為()A. B. C. D.11.若關于x的一元二次方程x(x+2)=m總有兩個不相等的實數根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<112.李老師為了了解學生暑期在家的閱讀情況,隨機調查了20名學生某一天的閱讀小時數,具體情況統計如下:閱讀時間(小時)22.533.54學生人數(名)12863則關于這20名學生閱讀小時數的說法正確的是()A.眾數是8 B.中位數是3C.平均數是3 D.方差是0.34二、填空題:(本大題共6個小題,每小題4分,共24分.)13.化簡:______.14.某航空公司規定,旅客乘機所攜帶行李的質量x(kg)與其運費y(元)由如圖所示的一次函數圖象確定,則旅客可攜帶的免費行李的最大質量為kg15.在正方形鐵皮上剪下一個扇形和一個半徑為1cm的圓形,使之恰好圍成一個圓錐,則圓錐的高為______.16.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC其中正確的是_____(填序號)17.如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是.18.已知函數是關于的二次函數,則__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某中學為了考察九年級學生的中考體育測試成績(滿分30分),隨機抽查了40名學生的成績(單位:分),得到如下的統計圖①和圖②.請根據相關信息,解答下列問題:(1)圖中m的值為_______________.(2)求這40個樣本數據的平均數、眾數和中位數:(3)根據樣本數據,估計該中學九年級2000名學生中,體育測試成績得滿分的大約有多少名學生。20.(6分)如圖,已知AB是圓O的直徑,F是圓O上一點,∠BAF的平分線交⊙O于點E,交⊙O的切線BC于點C,過點E作ED⊥AF,交AF的延長線于點D.求證:DE是⊙O的切線;若DE=3,CE=2.①求的值;②若點G為AE上一點,求OG+EG最小值.21.(6分)如圖,要利用一面墻(墻長為25米)建羊圈,用100米的圍欄圍成總面積為400平方米的三個大小相同的矩形羊圈,求羊圈的邊長AB,BC各為多少米?22.(8分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點M為邊BC上一動點,聯結AM并延長交射線DC于點F,作∠FAE=45°交射線BC于點E、交邊DCN于點N,聯結EF.(1)當CM:CB=1:4時,求CF的長.(2)設CM=x,CE=y,求y關于x的函數關系式,并寫出定義域.(3)當△ABM∽△EFN時,求CM的長.23.(8分)已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點分別為D,E(Ⅰ)如圖①,求∠CED的大小;(Ⅱ)如圖②,當DE=BE時,求∠C的大小.24.(10分)丁老師為了解所任教的兩個班的學生數學學習情況,對數學進行了一次測試,獲得了兩個班的成績(百分制),并對數據(成績)進行整理、描述和分析,下面給出了部分信息.①A、B兩班學生(兩個班的人數相同)數學成績不完整的頻數分布直方圖如下(數據分成5組:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B兩班學生測試成績在80≤x<90這一組的數據如下:A班:80808283858586878787888989B班:80808181828283848485858686868787878787888889③A、B兩班學生測試成績的平均數、中位數、方差如下:平均數中位數方差A班80.6m96.9B班80.8n153.3根據以上信息,回答下列問題:補全數學成績頻數分布直方圖;寫出表中m、n的值;請你對比分析A、B兩班學生的數學學習情況(至少從兩個不同的角度分析).25.(10分)如圖,在△ABC中,∠BAC=90°,AD⊥BC于點D,BF平分∠ABC交AD于點E,交AC于點F,求證:AE=AF.26.(12分)如圖1,是一個材質均勻可自由轉動的轉盤,轉盤的四個扇形面積相等,分別有數字1,2,3,1.如圖2,正方形ABCD頂點處各有一個圈.跳圈游戲的規則為:游戲者每轉動轉盤一次,當轉盤停止運動時,指針所落扇形中的數字是幾(當指針落在四個扇形的交線上時,重新轉動轉盤),就沿正方形的邊順時針方向連續跳幾個邊長.如:若從圖A起跳,第一次指針所落扇形中的數字是3,就順時針連線跳3個邊長,落到圈D;若第二次指針所落扇形中的數字是2,就從D開始順時針續跳2個邊長,落到圈B;……設游戲者從圈A起跳.(1)嘉嘉隨機轉一次轉盤,求落回到圈A的概率P1;(2)琪琪隨機轉兩次轉盤,用列表法求最后落回到圈A的概率P2,并指出她與嘉嘉落回到圈A的可能性一樣嗎?27.(12分)已知函數的圖象與函數的圖象交于點.(1)若,求的值和點P的坐標;(2)當時,結合函數圖象,直接寫出實數的取值范圍.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】分析:根據軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合.2、C【解析】試題分析:∵點M,N表示的有理數互為相反數,∴原點的位置大約在O點,∴絕對值最小的數的點是P點,故選C.考點:有理數大小比較.3、B【解析】
連接CD,求出CD⊥AB,根據勾股定理求出AC,在Rt△ADC中,根據銳角三角函數定義求出即可.【詳解】解:連接CD(如圖所示),設小正方形的邊長為,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,則.故選B.本題考查了勾股定理,銳角三角形函數的定義,等腰三角形的性質,直角三角形的判定的應用,關鍵是構造直角三角形.4、B【解析】
把拋物線y=x2+2x+3整理成頂點式形式并求出頂點坐標,再求出與y軸的交點坐標,然后求出所得拋物線的頂點,再利用頂點式形式寫出解析式即可.【詳解】解:∵y=x2+2x+3=(x+1)2+2,
∴原拋物線的頂點坐標為(-1,2),
令x=0,則y=3,
∴拋物線與y軸的交點坐標為(0,3),
∵拋物線繞與y軸的交點旋轉180°,
∴所得拋物線的頂點坐標為(1,4),
∴所得拋物線的解析式為:y=-x2+2x+3[或y=-(x-1)2+4].
故選:B.本題考查了二次函數圖象與幾何變換,利用頂點的變化確定函數解析式的變化可以使求解更簡便.5、C【解析】
根據乘積為1的兩個數互為倒數,可得一個數的倒數.【詳解】∵-18=1,∴﹣18的倒數是,故選C.本題考查了倒數,分子分母交換位置是求一個數的倒數的關鍵.6、D【解析】
根據二次函數圖象開口向上得到a>0,再根據對稱軸確定出b,根據二次函數圖形與軸的交點個數,判斷的符號,根據圖象發現當x=1時y=a+b+c<0,然后確定出一次函數圖象與反比例函數圖象的情況,即可得解.【詳解】∵二次函數圖象開口方向向上,∴a>0,∵對稱軸為直線∴b<0,二次函數圖形與軸有兩個交點,則>0,∵當x=1時y=a+b+c<0,∴的圖象經過第二四象限,且與y軸的正半軸相交,反比例函數圖象在第二、四象限,只有D選項圖象符合.故選:D.考查反比例函數的圖象,一次函數的圖象,二次函數的圖象,掌握函數圖象與系數的關系是解題的關鍵.7、C【解析】tan30°=338、D【解析】試題解析:用加減法解方程組時,如果消去y,最簡捷的方法是②×2+①,故選D.9、D【解析】
根據題意可得等量關系:①9枚黃金的重量=11枚白銀的重量;②(10枚白銀的重量+1枚黃金的重量)-(1枚白銀的重量+8枚黃金的重量)=13兩,根據等量關系列出方程組即可.【詳解】設每枚黃金重x兩,每枚白銀重y兩,由題意得:,故選:D.此題主要考查了由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系.10、B【解析】作AD⊥BC的延長線于點D,如圖所示:在Rt△ADC中,BD=AD,則AB=BD.cos∠ACB=,故選B.11、C【解析】
將關于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.本題熟練掌握一元二次方程的基本概念是本題的解題關鍵.12、B【解析】
A、根據眾數的定義找出出現次數最多的數;B、根據中位數的定義將這組數據從小到大重新排列,求出最中間的2個數的平均數,即可得出中位數;C、根據加權平均數公式代入計算可得;D、根據方差公式計算即可.【詳解】解:A、由統計表得:眾數為3,不是8,所以此選項不正確;B、隨機調查了20名學生,所以中位數是第10個和第11個學生的閱讀小時數,都是3,故中位數是3,所以此選項正確;C、平均數=,所以此選項不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項不正確;故選B.本題考查方差;加權平均數;中位數;眾數.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】分析:根據算術平方根的概念求解即可.詳解:因為32=9所以=3.故答案為3.點睛:此題主要考查了算術平方根的意義,關鍵是確定被開方數是哪個正數的平方.14、20【解析】設函數表達式為y=kx+b把(30,300)、(50、900)代入可得:y=30x-600當y=0時x=20所以免費行李的最大質量為20kg15、cm【解析】
利用已知得出底面圓的半徑為:1cm,周長為2πcm,進而得出母線長,即可得出答案.【詳解】∵半徑為1cm的圓形,∴底面圓的半徑為:1cm,周長為2πcm,扇形弧長為:2π=,∴R=4,即母線為4cm,∴圓錐的高為:(cm).故答案為cm.此題主要考查了圓錐展開圖與原圖對應情況,以及勾股定理等知識,根據已知得出母線長是解決問題的關鍵.16、①②④【解析】
由正方形的性質和相似三角形的判定與性質,即可得出結論.【詳解】∵△BPC是等邊三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正確;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正確;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD與△PDB不會相似;故③錯誤;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH?PC,故④正確;故答案是:①②④.本題考查的正方形的性質,等邊三角形的性質以及相似三角形的判定和性質,解答此題的關鍵是熟練掌握性質和定理.17、①③⑤【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再結合已知條件利用SAS可證兩三角形全等;
②過B作BF⊥AE,交AE的延長線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
③利用①中的全等,可得∠APD=∠AEB,結合三角形的外角的性質,易得∠BEP=90°,即可證;
④連接BD,求出△ABD的面積,然后減去△BDP的面積即可;
⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面積.【詳解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
,
∴△APD≌△AEB(SAS);
故此選項成立;
③∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此選項成立;
②過B作BF⊥AE,交AE的延長線于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE=
=
=
,
∴BF=EF=
,
故此選項不正確;
④如圖,連接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP=
,
又∵PB=
,
∴BE=
,
∵△APD≌△AEB,
∴PD=BE=
,
∴S
△ABP+S
△ADP=S
△ABD-S
△BDP=
S
正方形ABCD-
×DP×BE=
×(4+
)-
×
×
=
+
.
故此選項不正確.
⑤∵EF=BF=
,AE=1,
∴在Rt△ABF中,AB
2=(AE+EF)
2+BF
2=4+
,
∴S
正方形ABCD=AB
2=4+
,
故此選項正確.
故答案為①③⑤.本題考查了全等三角形的判定和性質的運用、正方形的性質的運用、正方形和三角形的面積公式的運用、勾股定理的運用等知識.18、1【解析】
根據一元二次方程的定義可得:,且,求解即可得出m的值.【詳解】解:由題意得:,且,解得:,且,∴故答案為:1.此題主要考查了一元二次方程的定義,關鍵是掌握“未知數的最高次數是1”且“二次項的系數不等于0”.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)25;(2)平均數:28.15,所以眾數是28,中位數為28,(3)體育測試成績得滿分的大約有300名學生.【解析】
(1)根據統計圖中的數據可以求得m的值;
(2)根據條形統計圖中的數據可以計算出平均數,得到眾數和中位數;
(3)根據樣本中得滿分所占的百分比,可以求得該中學九年級2000名學生中,體育測試成績得滿分的大約有多少名學生.【詳解】解:(1),∴m的值為25;(2)平均數:,因為在這組樣本數據中,28出現了12次,出現的次數最多,所以眾數是28;因為將這組樣本數據按從小到大的順序排列,其中處于中間的兩個數都是28,所以這組樣本數據的中位數為28;(3)×2000=300(名)∴估計該中學九年級2000名學生中,體育測試成績得滿分的大約有300名學生.本題考查條形統計圖、用樣本估計總體、加權平均數、中位數、眾數,解答本題的關鍵是明確它們各自的計算方法.20、(1)證明見解析(2)①②3【解析】
(1)作輔助線,連接OE.根據切線的判定定理,只需證DE⊥OE即可;(2)①連接BE.根據BC、DE兩切線的性質證明△ADE∽△BEC;又由角平分線的性質、等腰三角形的兩個底角相等求得△ABE∽△AFD,所以;②連接OF,交AD于H,由①得∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,故四邊形AOEF是菱形,由對稱性可知GO=GF,過點G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據兩點之間線段最短,當F、G、M三點共線,OG+EG=GF+GM=FM最小,此時FM=3.故OG+EG最小值是3.【詳解】(1)連接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切線(2)①解:連接BE∵直徑AB∴∠AEB=90°∵圓O與BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴②連接OF,交AE于G,由①,設BC=2x,則AE=3x∵△BEC∽△ABC∴∴解得:x1=2,(不合題意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=,∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,∴四邊形AOEF是菱形由對稱性可知GO=GF,過點G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據兩點之間線段最短,當F、G、M三點共線,OG+EG=GF+GM=FM最小,此時FM=FOsin60o=3.故OG+EG最小值是3.本題考查了切線的性質、相似三角形的判定與性質.比較復雜,解答此題的關鍵是作出輔助線,利用數形結合解答.21、羊圈的邊長AB,BC分別是20米、20米.【解析】試題分析:設AB的長度為x米,則BC的長度為(100﹣4x)米;然后根據矩形的面積公式列出方程.試題解析:設AB的長度為x米,則BC的長度為(100﹣4x)米.根據題意得(100﹣4x)x=400,解得x1=20,x2=1.則100﹣4x=20或100﹣4x=2.∵2>21,∴x2=1舍去.即AB=20,BC=20考點:一元二次方程的應用.22、(1)CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.【解析】
(1)如圖1中,作AH⊥BC于H.首先證明四邊形AHCD是正方形,求出BC、MC的長,利用平行線分線段成比例定理即可解決問題;(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM?EB,由此構建函數關系式即可解決問題;(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點G,使得HG=DN,連接AG.想辦法證明CM=CN,MN=DN+HM即可解決問題;【詳解】解:(1)如圖1中,作AH⊥BC于H.∵CD⊥BC,AD∥BC,∴∠BCD=∠D=∠AHC=90°,∴四邊形AHCD是矩形,∵AD=DC=1,∴四邊形AHCD是正方形,∴AH=CH=CD=1,∵∠B=45°,∴AH=BH=1,BC=2,∵CM=BC=,CM∥AD,∴=,∴=,∴CF=1.(2)如圖1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,∵∠AEM=∠AEB,∠EAM=∠B,∴△EAM∽△EBA,∴=,∴AE2=EM?EB,∴1+(1+y)2=(x+y)(y+2),∴y=,∵2﹣2x≥0,∴0≤x≤1.(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點G,使得HG=DN,連接AG.則△ADN≌△AHG,△MAN≌△MAG,∴MN=MG=HM+GH=HM+DN,∵△ABM∽△EFN,∴∠EFN=∠B=45°,∴CF=CE,∵四邊形AHCD是正方形,∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,∴△AHE≌△ADF,∴∠AEH=∠AFD,∵∠AEH=∠DAN,∠AFD=∠HAM,∴∠HAM=∠DAN,∴△ADN≌△AHM,∴DN=HM,設DN=HM=x,則MN=2x,CN=CM=x,∴x+x=1,∴x=﹣1,∴CM=2﹣.本題考查了正方形的判定與性質,平行線分線段成比例定理,勾股定理,相似三角形的判定與性質,全等三角形的判定與性質.熟練運用平行線分線段成比例定理是解(1)的關鍵;證明△EAM∽△EBA是解(2)的關鍵;綜合運用全等三角形的判定與性質是解(3)的關鍵.23、(Ⅰ)68°(Ⅱ)56°【解析】
(1)圓內接四邊形的一個外角等于它的內對角,利用圓內接四邊形的性質證明∠CED=∠A即可,(2)連接AE,在Rt△AEC中,先根據同圓中,相等的弦所對弧相等,再根據同圓中,相等的弧所對圓周角相等,求出∠EAC,最后根據直徑所對圓周是直角,利用直角三角形兩銳角互余即可解決問題.【詳解】(Ⅰ)∵四邊形ABED圓內接四邊形,∴∠A+∠DEB=180°,∵∠CED+∠DEB=180°,∴∠CED=∠A,∵∠A=68°,∴∠CED=68°.(Ⅱ)連接AE.∵DE=BD,∴,∴∠DAE=∠EAB=∠CAB=34°,∵AB是直徑,∴∠AEB=90°,∴∠AEC=90°,∴∠C=90°﹣∠DAE=90°﹣34°=56°本題主要考查圓周角定理、直徑的性質、圓內接四邊形的性質等知識,解決本題的關鍵是靈活運用所學知識解決問題.24、(1)見解析;(2)m=81,n=85;(3)略.【解析】
(1)先求出B班人數,根據兩班人數相同可求出A班70≤x<80組的人數,補全統計圖即可;(2)根據中位數的定義求解即可;(3)可以從中位數和方差的角度分析,合理即可.【詳解】解:(1)A、B兩班學生人數=5+2+3+22+8=40人,A班70≤x<80組的人數=40-1-7-13-9=10人,A、B兩班學生數學成績頻數分布直方圖如下:(2)根據中位數的定義可得:m==81,n==85;(3)從中位數的角度看,B班學生的數學成績比A班學生的數學成績好;從方差的角度看,A班學生的數學成績比B班學生的數學成績穩定.本題考查了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 游戲異常處理與故障排查考核試卷
- 民間非營利組織新舊會計制度有關銜接問題的處理規定2025
- 3.20國際幸福日幸福其實并不遙遠幸福可以很簡單課件
- 四川省內江市東興區2025屆小升初常考易錯數學檢測卷含解析
- 湘潭理工學院《新媒體產品設計與項目管理》2023-2024學年第二學期期末試卷
- 江西省2024-2025學年高三1月物理試題含解析
- 遼寧特殊教育師范高等專科學校《心理咨詢技術與實務》2023-2024學年第二學期期末試卷
- 臺州科技職業學院《管理會計應用指引》2023-2024學年第二學期期末試卷
- 西安航空職業技術學院《生物多樣性》2023-2024學年第二學期期末試卷
- 山東交通學院《高層建筑施工技術B》2023-2024學年第二學期期末試卷
- 湖北省武漢市七一華源中學2024-2025學年九年級下學期第二次月考化學試題(含答案)
- TSSITS 2006-2024 面向特定場景低速自動駕駛產品準入及運營規范
- GB/T 25020.1-2025電氣化鐵路接觸網支柱第1部分:鋼支柱
- 廣西壯族自治區2025屆高三下學期開學考試化學試題(含答案)
- 社會福利 課件匯 高和榮 第1-5章 緒論- 社會福利主體
- 恐龍無處不有(2024年山東泰安中考語文現代文閱讀試題)
- 洗車流程培訓
- 2023九年級數學下冊 第二十八章 銳角三角函數28.2 解直角三角形及其應用28.2.2 應用舉例第2課時 方向角和坡角問題說課稿 (新版)新人教版
- 2024年開封大學高職單招職業技能測驗歷年參考題庫(頻考版)含答案解析
- 危險化學品購銷的合同范本
- YY/T 1938-2024醫用透明質酸鈉敷料
評論
0/150
提交評論