




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省遂寧城區五校聯考2025屆初三第一次診斷性測試數學試題理試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值22.利用“分形”與“迭代”可以制作出很多精美的圖形,以下是制作出的幾個簡單圖形,其中是軸對稱但不是中心對稱的圖形是()A. B. C. D.3.將弧長為2πcm、圓心角為120°的扇形圍成一個圓錐的側面,則這個圓錐的高是()A.cm B.2cm C.2cm D.cm4.如圖,數軸上有A,B,C,D四個點,其中表示互為倒數的點是()A.點A與點B B.點A與點D C.點B與點D D.點B與點C5.若分式的值為零,則x的值是()A.1 B. C. D.26.如圖是二次函數y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為直線x=,且經過點(2,0),下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是拋物線上的兩點,則y1<y2.其中說法正確的有()A.②③④ B.①②③ C.①④ D.①②④7.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.8.如圖,AB∥CD,點E在線段BC上,若∠1=40°,∠2=30°,則∠3的度數是()A.70° B.60° C.55° D.50°9.如圖,下列各數中,數軸上點A表示的可能是()A.4的算術平方根 B.4的立方根 C.8的算術平方根 D.8的立方根10.把不等式組的解集表示在數軸上,正確的是()A. B.C. D.11.隨機擲一枚均勻的硬幣兩次,至少有一次正面朝上的概率為()A. B. C. D.12.某校舉行運動會,從商場購買一定數量的筆袋和筆記本作為獎品.若每個筆袋的價格比每個筆記本的價格多3元,且用200元購買筆記本的數量與用350元購買筆袋的數量相同.設每個筆記本的價格為x元,則下列所列方程正確的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,一艘海輪位于燈塔P的北偏東方向60°,距離燈塔為4海里的點A處,如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長_____海里.14.如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交AC于E,交BC的延長線于F,若∠F=30°,DE=1,則BE的長是.15.把拋物線y=2x2向右平移3個單位,再向下平移2個單位,得到的新的拋物線的表達式是_____.16.已知,大正方形的邊長為4厘米,小正方形的邊長為2厘米,起始狀態如圖所示,大正方形固定不動,把小正方形向右平移,當兩個正方形重疊部分的面積為2平方厘米時,小正方形平移的距離為_____厘米.17.如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當正方形CDEF的邊長為4時,陰影部分的面積為_____.18.如圖,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)鐵嶺市某商貿公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現決定降價銷售,已知這種干果銷售量y(千克)與每千克降價x(元)(0<x<20)之間滿足一次函數關系,其圖象如圖所示:求y與x之間的函數關系式;商貿公司要想獲利2090元,則這種干果每千克應降價多少元?該干果每千克降價多少元時,商貿公司獲利最大?最大利潤是多少元?20.(6分)如圖,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的長.21.(6分)如圖,矩形中,對角線、交于點,以、為鄰邊作平行四邊形,連接求證:四邊形是菱形若,,求四邊形的面積22.(8分)學了統計知識后,小紅就本班同學上學“喜歡的出行方式”進行了一次調查,圖(1)和圖(2)是她根據采集的數據繪制的兩幅不完整的統計圖,請根據圖中提供的信息解答以下問題:(1)補全條形統計圖,并計算出“騎車”部分所對應的圓心角的度數.(2)若由3名“喜歡乘車”的學生,1名“喜歡騎車”的學生組隊參加一項活動,現欲從中選出2人擔任組長(不分正副),求出2人都是“喜歡乘車”的學生的概率,(要求列表或畫樹狀圖)23.(8分)小明遇到這樣一個問題:已知:.求證:.經過思考,小明的證明過程如下:∵,∴.∴.接下來,小明想:若把帶入一元二次方程(a0),恰好得到.這說明一元二次方程有根,且一個根是.所以,根據一元二次方程根的判別式的知識易證:.根據上面的解題經驗,小明模仿上面的題目自己編了一道類似的題目:已知:.求證:.請你參考上面的方法,寫出小明所編題目的證明過程.24.(10分)如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a、b滿足+|b﹣6|=0,點B在第一象限內,點P從原點出發,以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.a=,b=,點B的坐標為;當點P移動4秒時,請指出點P的位置,并求出點P的坐標;在移動過程中,當點P到x軸的距離為5個單位長度時,求點P移動的時間.25.(10分)已知:如圖,在正方形ABCD中,點E、F分別是AB、BC邊的中點,AF與CE交點G,求證:AG=CG.26.(12分)如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數,且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.(1)填空:∠AOB=°,用m表示點A′的坐標:A′(,);(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關系式;②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.27.(12分)如圖1,二次函數y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.(1)求頂點D的坐標(用含a的代數式表示);(2)若以AD為直徑的圓經過點C.①求拋物線的函數關系式;②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】設拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,
由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.2、A【解析】
根據:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;在平面內,把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.逐個按要求分析即可.【詳解】選項A,是軸對稱圖形,不是中心對稱圖形,故可以選;選項B,是軸對稱圖形,也是中心對稱圖形,故不可以選;選項C,不是軸對稱圖形,是中心對稱圖形,故不可以選;選項D,是軸對稱圖形,也是中心對稱圖形,故不可以選.故選A本題考核知識點:軸對稱圖形和中心對稱圖形.解題關鍵點:理解軸對稱圖形和中心對稱圖形定義.
錯因分析容易題.失分的原因是:沒有掌握軸對稱圖形和中心對稱圖形的定義.
3、B【解析】
由弧長公式可求解圓錐母線長,再由弧長可求解圓錐底面半徑長,再運用勾股定理即可求解圓錐的高.【詳解】解:設圓錐母線長為Rcm,則2π=,解得R=3cm;設圓錐底面半徑為rcm,則2π=2πr,解得r=1cm.由勾股定理可得圓錐的高為=2cm.故選擇B.本題考查了圓錐的概念和弧長的計算.4、A【解析】
試題分析:主要考查倒數的定義和數軸,要求熟練掌握.需要注意的是:倒數的性質:負數的倒數還是負數,正數的倒數是正數,0沒有倒數.倒數的定義:若兩個數的乘積是1,我們就稱這兩個數互為倒數.根據倒數定義可知,-2的倒數是-,有數軸可知A對應的數為-2,B對應的數為-,所以A與B是互為倒數.故選A.考點:1.倒數的定義;2.數軸.5、A【解析】試題解析:∵分式的值為零,∴|x|﹣1=0,x+1≠0,解得:x=1.故選A.6、D【解析】
根據圖象得出a<0,a+b=0,c>0,即可判斷①②;把x=2代入拋物線的解析式即可判斷③,根據(-2,y1),(,y2)到對稱軸的距離即可判斷④.【詳解】∵二次函數的圖象的開口向下,∴a<0,∵二次函數的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數圖象的對稱軸是直線x=,∴a=-b,∴b>0,∴abc<0,故①正確;∵a=-b,∴a+b=0,故②正確;把x=2代入拋物線的解析式得,4a+2b+c=0,故③錯誤;∵,故④正確;故選D..本題考查了二次函數的圖象與系數的關系的應用,題目比較典型,主要考查學生的理解能力和辨析能力.7、A【解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.8、A【解析】試題分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故選A.考點:平行線的性質.9、C【解析】
解:由題意可知4的算術平方根是2,4的立方根是<2,8的算術平方根是,2<<3,8的立方根是2,
故根據數軸可知,
故選C10、B【解析】
首先解出各個不等式的解集,然后求出這些解集的公共部分即可.【詳解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式組無解,故選B.解不等式組時要注意解集的確定原則:同大取大,同小取小,大小小大取中間,大大小小無解了.11、D【解析】
先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據概率公式求解.【詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是,故選:D.本題考查了隨機事件的概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率.12、B【解析】試題分析:設每個筆記本的價格為x元,根據“用200元購買筆記本的數量與用350元購買筆袋的數量相同”這一等量關系列出方程即可.考點:由實際問題抽象出分式方程二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】分析:首先由方向角的定義及已知條件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根據平行線的性質得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP?cos∠A=1海里.詳解:如圖,由題意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP?cos∠A=4×cos60°=4×=1海里.故答案為1.點睛:本題考查了解直角三角形的應用-方向角問題,平行線的性質,三角函數的定義,正確理解方向角的定義是解題的關鍵.14、2【解析】∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°。∵∠F=30°,∴∠A=∠F=30°(同角的余角相等)。又AB的垂直平分線DE交AC于E,∴∠EBA=∠A=30°。∴Rt△DBE中,BE=2DE=2。15、y=1(x﹣3)1﹣1.【解析】
拋物線的平移,實際上就是頂點的平移,先求出原拋物線的頂點坐標,再根據平移規律,推出新拋物線的頂點坐標,根據頂點式可求新拋物線的解析式.【詳解】∵y=1x1的頂點坐標為(0,0),∴把拋物線右平移3個單位,再向下平移1個單位,得新拋物線頂點坐標為(3,﹣1),∵平移不改變拋物線的二次項系數,∴平移后的拋物線的解析式是y=1(x﹣3)1﹣1.故答案為y=1(x﹣3)1﹣1.本題考查了二次函數圖象的平移,其規律是是:將二次函數解析式轉化成頂點式y=a(x-h)1+k
(a,b,c為常數,a≠0),確定其頂點坐標(h,k),在原有函數的基礎上“h值正右移,負左移;k值正上移,負下移”.16、1或5.【解析】
小正方形的高不變,根據面積即可求出小正方形平移的距離.【詳解】解:當兩個正方形重疊部分的面積為2平方厘米時,重疊部分寬為2÷2=1,①如圖,小正方形平移距離為1厘米;②如圖,小正方形平移距離為4+1=5厘米.故答案為1或5,此題考查了平移的性質,要明確,平移前后圖形的形狀和面積不變.畫出圖形即可直觀解答.17、4π﹣1【解析】分析:連結OC,根據勾股定理可求OC的長,根據題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.詳解:連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是的中點,
∴∠COD=45°,
∴OC=CD=4,
∴陰影部分的面積=扇形BOC的面積-三角形ODC的面積
==4π-1.故答案是:4π-1.點睛:考查了正方形的性質和扇形面積的計算,解題的關鍵是得到扇形半徑的長度.18、1.【解析】
由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行線分線段成比例定理,即可求得答案.【詳解】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=1.故答案為:1.此題考查了平行線分線段成比例定理以及等腰三角形的判定與性質.注意掌握線段的對應關系是解此題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=10x+100;(2)這種干果每千克應降價9元;(3)該干果每千克降價5元時,商貿公司獲利最大,最大利潤是2250元.【解析】
(1)由待定系數法即可得到函數的解析式;(2)根據銷售量×每千克利潤=總利潤列出方程求解即可;(3)根據銷售量×每千克利潤=總利潤列出函數解析式求解即可.【詳解】(1)設y與x之間的函數關系式為:y=kx+b,把(2,120)和(4,140)代入得,,解得:,∴y與x之間的函數關系式為:y=10x+100;(2)根據題意得,(60﹣40﹣x)(10x+100)=2090,解得:x=1或x=9,∵為了讓顧客得到更大的實惠,∴x=9,答:這種干果每千克應降價9元;(3)該干果每千克降價x元,商貿公司獲得利潤是w元,根據題意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,∴w=﹣10(x﹣5)2+2250,∵a=-10,∴當x=5時,故該干果每千克降價5元時,商貿公司獲利最大,最大利潤是2250元.本題考查的是二次函數的應用,此類題目主要考查學生分析、解決實際問題能力,又能較好地考查學生“用數學”的意識.20、8+6.【解析】
如圖作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解決問題;【詳解】解:如圖作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=BC=6,BH==6,在Rt△ACH中,tanA==,∴AH=8,∴AC==10,本題考查解直角三角形,銳角三角函數等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.21、(1)見解析;(2)S四邊形ADOE=.【解析】
(1)根據矩形的性質有OA=OB=OC=OD,根據四邊形ADOE是平行四邊形,得到OD∥AE,AE=OD.等量代換得到AE=OB.即可證明四邊形AOBE為平行四邊形.根據有一組鄰邊相等的平行四邊形是菱形即可證明.(2)根據菱形的性質有∠EAB=∠BAO.根據矩形的性質有AB∥CD,根據平行線的性質有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根據面積公式SΔADC,即可求解.【詳解】(1)證明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四邊形ADOE,∴OD∥AE,AE=OD.∴AE=OB.∴四邊形AOBE為平行四邊形.∵OA=OB,∴四邊形AOBE為菱形.(2)解:∵菱形AOBE,∴∠EAB=∠BAO.∵矩形ABCD,∴AB∥CD.∴∠BAC=∠ACD,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴∠DCA=60°.∵DC=2,∴AD=.∴SΔADC=.∴S四邊形ADOE=.考查平行四邊形的判定與性質,矩形的性質,菱形的判定與性質,解直角三角形,綜合性比較強.22、(1)補全條形統計圖見解析;“騎車”部分所對應的圓心角的度數為108°;(2)2人都是“喜歡乘車”的學生的概率為.【解析】
(1)從兩圖中可以看出乘車的有25人,占了50%,即可得共有學生50人;總人數減乘車的和騎車的人數就是步行的人數,根據數據補全直方圖即可;要求扇形的度數就要先求出騎車的占的百分比,然后再求度數;(2)列出從這4人中選兩人的所有等可能結果數,2人都是“喜歡乘車”的學生的情況有3種,然后根據概率公式即可求得.【詳解】(1)被調查的總人數為25÷50%=50人;則步行的人數為50﹣25﹣15=10人;如圖所示條形圖,“騎車”部分所對應的圓心角的度數=×360°=108°;(2)設3名“喜歡乘車”的學生表示為A、B、C,1名“喜歡騎車”的學生表示為D,則有AB、AC、AD、BC、BD、CD這6種等可能的情況,其中2人都是“喜歡乘車”的學生有3種結果,所以2人都是“喜歡乘車”的學生的概率為.本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.23、證明見解析【解析】解:∵,∴.∴.∴是一元二次方程的根.∴,∴.24、(1)4,6,(4,6);(2)點P在線段CB上,點P的坐標是(2,6);(3)點P移動的時間是2.5秒或5.5秒.【解析】試題分析:(1)根據可以求得的值,根據長方形的性質,可以求得點的坐標;
(2)根據題意點從原點出發,以每秒2個單位長度的速度沿著的線路移動,可以得到當點移動4秒時,點的位置和點的坐標;
(3)由題意可以得到符合要求的有兩種情況,分別求出兩種情況下點移動的時間即可.試題解析:(1)∵a、b滿足∴a?4=0,b?6=0,解得a=4,b=6,∴點B的坐標是(4,6),故答案是:4,6,(4,6);(2)∵點P從原點出發,以每秒2個單位長度的速度沿著O?C?B?A?O的線路移動,∴2×4=8,∵OA=4,OC=6,∴當點P移動4秒時,在線段CB上,離點C的距離是:8?6=2,即當點P移動4秒時,此時點P在線段CB上,離點C的距離是2個單位長度,點P的坐標是(2,6);(3)由題意可得,在移動過程中,當點P到x軸的距離為5個單位長度時,存在兩種情況,第一種情況,當點P在OC上時,點P移動的時間是:5÷2=2.5秒,第二種情況,當點P在BA上時,點P移動的時間是:(6+4+1)÷2=5.5秒,故在移動過程中,當點P到x軸的距離為5個單位長度時,點P移動的時間是2.5秒或5.5秒.25、詳見解析.【解析】
先證明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根據∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.【詳解】證明:∵四邊形ABCD是正方形,∴AD=DC,∵E、F分別是AB、BC邊的中點,∴AE=ED=CF=DF.又∠D=∠D,∴△ADF≌△CDE(SAS).∴∠DAF=∠DCE,∠AFD=∠CED.∴∠AEG=∠CFG.在△AEG和△CFG中,∴△AEG≌△CFG(ASA).∴AG=CG.本題主要考查正方形的性質、全等三角形的判定和性質,關鍵是要靈活運用全等三角形的判定方法.26、(1)45;(m,﹣m);(2)相似;(3)①;②.【解析】試題分析:(1)由B與C的坐標求出OB與OC的長,進一步表示出BC的長,再證三角形AOB為等腰直角三角形,即可求出所求角的度數;由旋轉的性質得,即可確定出A′坐標;(2)△D′OE∽△ABC.表示出A與B的坐標,由,表示出P坐標,由拋物線的頂點為A′,表示出拋物線解析式,把點E坐標代入即可得到m與n的關系式,利用三角形相似即可得證;(3)①當E與原點重合時,把A與E坐標代入,整理即可得到a,b,m的關系式;②拋物線與四邊形ABCD有公共點,可得出拋物線過點C時的開口最大,過點A時的開口最小,分兩種情況考慮:若拋物線過點C(3m,0),此時MN的最大值為10,求出此時a的值;若拋物線過點A(2m,2m),求出此時a的值,即可確定出拋物線與四邊形ABCD有公共點時a的范圍.試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉的性質得:OD′=D′A′=m,即A′(m,﹣m);故答案為45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′為拋物線的頂點,∴設拋物線解析式為,∵拋物線過點E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①當點E與點O重合時,E(0,0),∵拋物線過點E,A,∴,整理得:,即;②∵拋物線與四邊形ABCD有公共點,∴拋物線過點C時的開口最大,過點A時的開口最小,若拋物線過點C(3m,0),此時MN的最大值為10,∴a(3m)2﹣(1+am)?3m=0,整理得:am=,即拋物線解析式為,由A(2m,2m),可得直線OA解析式為y=x,聯立拋物線與直線OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,當m=2時,a=;若拋物線過點A(2m,2m),則,解得:am=2,∵m=2,∴a=1,則拋物線與四邊形ABCD有公共點時a的范圍為.考點:1.二次函數綜合題;2.壓軸題;3.探究型;4.最值問題.27、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點Q的坐標為(1,﹣4+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 今年福建省高三省質檢語文作文
- 住院患者護理健康宣教
- 氧氣吸入療法操作指南
- 二年級數學100以內口算1000題
- 小學一年級數學20以內加減法口算訓練300題
- 貴州省遵義市紅花崗區2025年中考語文一模試卷(含答案)
- 武漢鐵路職業技術學院《大數據與生物信息學(含操作)》2023-2024學年第二學期期末試卷
- 奎屯市2025屆四年級數學第二學期期末考試試題含解析
- 興安市重點中學2025年高三第一期中調研測試化學試題含解析
- 南京交通職業技術學院《跨文化交流與比較方法漢英》2023-2024學年第一學期期末試卷
- 四川成都農業科技中心招聘考試真題2024
- 淄博藝術中考試題及答案
- 2025北京豐臺高三一模化學試題及答案
- 云南省氣象局歷年招聘考試真題庫
- 江蘇省南通市、宿遷、連云港、泰州、揚州、徐州、淮安蘇北七市2025屆高三第二次調研英語英語參考答案及聽力材料、評分標準
- 2025廣東醫科大學輔導員考試題庫
- 石油天然氣(海洋石油)工程AI智能應用行業深度調研及發展戰略咨詢報告
- 2024年7月國家開放大學專本科《法律文書》期末紙質考試試題及答案
- 氟化工產品考核試卷
- 課件圍術期下肢深靜脈血栓的預防與護理
- 2013年7月國家開放大學專本科《法律文書》期末紙質考試試題及答案
評論
0/150
提交評論