




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古包鋼一中2025屆高考數學試題模擬考最后一考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為()A. B. C. D.2.若各項均為正數的等比數列滿足,則公比()A.1 B.2 C.3 D.43.某程序框圖如圖所示,若輸出的,則判斷框內為()A. B. C. D.4.的展開式中有理項有()A.項 B.項 C.項 D.項5.已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.6.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.7.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內可填寫的條件是()A. B. C. D.8.設M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.9.若直線的傾斜角為,則的值為()A. B. C. D.10.已知集合,則=()A. B. C. D.11.設集合,,則集合A. B. C. D.12.定義在上函數滿足,且對任意的不相等的實數有成立,若關于x的不等式在上恒成立,則實數m的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為雙曲線的左、右焦點,過點作直線與圓相切于點,且與雙曲線的右支相交于點,若是上的一個靠近點的三等分點,且,則四邊形的面積為_______.14.已知數列的前項和為,且滿足,則______15.的展開式中常數項是___________.16.的二項展開式中,含項的系數為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在國家“大眾創業,萬眾創新”戰略下,某企業決定加大對某種產品的研發投入.為了對新研發的產品進行合理定價,將該產品按事先擬定的價格試銷,得到一組檢測數據如表所示:試銷價格(元)產品銷量(件)已知變量且有線性負相關關系,現有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.(1)試判斷誰的計算結果正確?(2)若由線性回歸方程得到的估計數據與檢測數據的誤差不超過,則稱該檢測數據是“理想數據”,現從檢測數據中隨機抽取個,求“理想數據”的個數為的概率.18.(12分)設,函數,其中為自然對數的底數.(1)設函數.①若,試判斷函數與的圖像在區間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設函數,試判斷函數是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.19.(12分)一年之計在于春,一日之計在于晨,春天是播種的季節,是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發芽的概率均為,且每粒種子是否發芽相互獨立.對每一個坑而言,如果至少有兩粒種子發芽,則不需要進行補播種,否則要補播種.(1)當取何值時,有3個坑要補播種的概率最大?最大概率為多少?(2)當時,用表示要補播種的坑的個數,求的分布列與數學期望.20.(12分)如圖,正方形所在平面外一點滿足,其中分別是與的中點.(1)求證:;(2)若,且二面角的平面角的余弦值為,求與平面所成角的正弦值.21.(12分)如圖,已知橢圓經過點,且離心率,過右焦點且不與坐標軸垂直的直線與橢圓相交于兩點.(1)求橢圓的標準方程;(2)設橢圓的右頂點為,線段的中點為,記直線的斜率分別為,求證:為定值.22.(10分)(江蘇省徐州市高三第一次質量檢測數學試題)在平面直角坐標系中,已知平行于軸的動直線交拋物線:于點,點為的焦點.圓心不在軸上的圓與直線,,軸都相切,設的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點,過且垂直于的直線為,直線,分別與軸相交于點,.當線段的長度最小時,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據焦點所在坐標軸和漸近線方程設出雙曲線的標準方程,結合焦點坐標求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設雙曲線的方程為,一個焦點為,∴,∴,故的標準方程為.故選:B此題考查根據雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導致方程形式出錯.2.C【解析】
由正項等比數列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.本題考查了等比數列基本量的求法,屬基礎題.3.C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續循環循環前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環的條件應為k>5?本題選擇C選項.點睛:使用循環結構尋數時,要明確數字的結構特征,決定循環的終止條件與數的結構特征的關系及循環次數.尤其是統計數時,注意要統計的數的出現次數與循環次數的區別.4.B【解析】
由二項展開式定理求出通項,求出的指數為整數時的個數,即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.5.D【解析】
如圖所示,過分別作于,于,利用和,聯立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據得到:,即,根據得到:,即,解得,,故.故選:.本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.6.B【解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應用,考查運算求解能力,屬于中等題.7.C【解析】
根據循環結構的程序框圖,帶入依次計算可得輸出為25時的值,進而得判斷框內容.【詳解】根據循環程序框圖可知,則,,,,,此時輸出,因而不符合條件框的內容,但符合條件框內容,結合選項可知C為正確選項,故選:C.本題考查了循環結構程序框圖的簡單應用,完善程序框圖,屬于基礎題.8.B【解析】
設,通過,再利用向量的加減運算可得,結合條件即可得解.【詳解】設,則有.又,所以,有.故選B.本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.9.B【解析】
根據題意可得:,所求式子利用二倍角的正弦函數公式化簡,再利用同角三角函數間的基本關系弦化切后,將代入計算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B本題考查二倍角的正弦函數公式,同角三角函數間的基本關系,以及直線傾斜角與斜率之間的關系,熟練掌握公式是解本題的關鍵.10.D【解析】
先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D此題考查的是集合的并集、補集運算,屬于基礎題.11.B【解析】
先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結果.【詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.本小題主要考查一元二次不等式的解法,考查對數不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次項系數化為正數,且不等號的另一邊化為,然后通過因式分解,求得對應的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.12.B【解析】
結合題意可知是偶函數,且在單調遞減,化簡題目所給式子,建立不等式,結合導函數與原函數的單調性關系,構造新函數,計算最值,即可.【詳解】結合題意可知為偶函數,且在單調遞減,故可以轉換為對應于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.本道題考查了函數的基本性質和導函數與原函數單調性關系,計算范圍,可以轉化為函數,結合導函數,計算最值,即可得出答案.二、填空題:本題共4小題,每小題5分,共20分。13.60【解析】
根據題中給的信息與雙曲線的定義可求得與,再在中,由余弦定理求解得,繼而得到各邊的長度,再根據計算求解即可.【詳解】如圖所示:設雙曲線的半焦距為.因為,,,所以由勾股定理,得.所以.因為是上一個靠近點的三等分點,是的中點,所以.由雙曲線的定義可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.則.則,得.則的底邊上的高為.所以.故答案為:60本題主要考查了雙曲線中利用定義與余弦定理求解線段長度與面積的方法,需要根據雙曲線的定義表示各邊的長度,再在合適的三角形里面利用余弦定理求得基本量的關系.屬于難題.14.【解析】
對題目所給等式進行賦值,由此求得的表達式,判斷出數列是等比數列,由此求得的值.【詳解】解:,可得時,,時,,又,兩式相減可得,即,上式對也成立,可得數列是首項為1,公比為的等比數列,可得.本小題主要考查已知求,考查等比數列前項和公式,屬于中檔題.15.-160【解析】試題分析:常數項為.考點:二項展開式系數問題.16.【解析】
寫出二項展開式的通項,然后取的指數為求得的值,則項的系數可求得.【詳解】,由,可得.含項的系數為.故答案為:本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)乙同學正確;(2).【解析】
(1)根據變量且有線性負相關關系判斷甲不正確.根據回歸直線方程過樣本中心點,判斷出乙正確.(2)由線性回歸方程得到的估計數據,計算出誤差,求得“理想數據”的個數,由此利用古典概型概率計算公式,求得所求概率.【詳解】(1)已知變量具有線性負相關關系,故甲不正確,,代入兩個回歸方程,驗證乙同學正確,故回歸方程為:(2)由(1)得到的回歸方程,計算估計數據如下表:021212由上表可知,“理想數據”的個數為.用列舉法可知,從個不同數據里抽出個不同數據的方法有種.從符合條件的個不同數據中抽出個,還要在不符合條件的個不同數據中抽出個的方法有種.故所求概率為本小題主要考查回歸直線方程的判斷,考查古典概型概率計算,考查數據處理能力,屬于中檔題.18.(1)①函數與的圖象在區間上有交點;②證明見解析;(2)且;【解析】
(1)①令,結合函數零點的判定定理判斷即可;②設切點橫坐標為,求出切線方程,得到,根據函數的單調性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數的單調區間,確定的范圍即可.【詳解】解:(1)①當時,函數,令,,則,,故,又函數在區間上的圖象是不間斷曲線,故函數在區間上有零點,故函數與的圖象在區間上有交點;②證明:假設存在,使得直線是曲線的切線,切點橫坐標為,且,則切線在點切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數在和上單調遞增,又函數在時,故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當時,遞減,故當時,,遞增,當時,,遞減,故在處取得極大值,不合題意;時,則在遞減,在,遞增,①當時,,故在遞減,可得當時,,當時,,,易證,令,,令,故,則,故在遞增,則,即時,,故在,內存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時,,遞增,不合題意;③當時,,當,時,,遞減,當時,,遞增,故在處取極小值,符合題意,綜上,實數的范圍是且.本題考查了函數的單調性,最值問題,考查導數的應用以及分類討論思想,轉化思想,屬于難題.19.(1)當或時,有3個坑要補播種的概率最大,最大概率為;(2)見解析.【解析】
(1)將有3個坑需要補種表示成n的函數,考查函數隨n的變化情況,即可得到n為何值時有3個坑要補播種的概率最大.(2)n=1時,X的所有可能的取值為0,1,2,3,1.分別計算出每個變量對應的概率,列出分布列,求期望即可.【詳解】(1)對一個坑而言,要補播種的概率,有3個坑要補播種的概率為.欲使最大,只需,解得,因為,所以當時,;當時,;所以當或時,有3個坑要補播種的概率最大,最大概率為.(2)由已知,的可能取值為0,1,2,3,1.,所以的分布列為01231的數學期望.本題考查了古典概型的概率求法,離散型隨機變量的概率分布,二項分布,主要考查簡單的計算,屬于中檔題.20.(1)證明見解析(2)【解析】
(1)先證明EF平面,即可求證;(2)根據二面角的余弦值,可得平面,以為坐標原點,建立空間直角坐標系,利用向量計算線面角即可.【詳解】(1)連接,交于點,連結.則,故面.又面,因此.(2)由(1)知即為二面角的平面角,且.在中應用余弦定理,得,于是有,即,從而有平面.以為坐標原點,建立如圖所示的空間直角坐標系,則,于是,,設平面的法向量為,則,即,解得于是平面的一個法向量為.設直線與平面所成角為,因此.本題主要考查了線面垂直,線線垂直的證明,二面角,線面角的向量求法,屬于中檔題.21.(1);(2)詳見解析.【解析】
(1)由橢圓離心率、系數關系和已知點坐標構建方程組,求得,代入標準方程中即可;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煉油廠智能化與大數據應用考核試卷
- 電氣機械系統的智能化旅游應用考核試卷
- 糖批發企業市場競爭力評估與提升考核試卷
- 8-1數模轉換電子課件
- 朋友和我初二語文作文
- 汽車配件售后服務提升考核試卷
- 稀土金屬加工中的設備投資與經濟效益分析案例考核試卷
- 疏散通道的安全標識與規范設置考核試卷
- 碳素材料在化學合成中的催化作用考核試卷
- 手腕康復器材考核試卷
- 壓覆礦產資源評估服務方案
- 三聯圖書館管理系統2013壓縮版常見問題與解答
- 化妝品年度全套內部審核檢查計劃、內審記錄表及內審報告
- 小學英語課程與教學論(小學教育專業)PPT完整全套教學課件
- 五年級下冊綜合實踐活動教學設計-紅蘿卜牙簽高塔的研究 全國通用
- 分布式光伏發電項目投標技術方案(純方案)
- 中藥養護記錄表
- 實驗室安全自查表樣表
- 外賣食物中毒起訴書
- xk5036數控立式銑床總體及橫向進給傳動機構設計論文大學本科畢業論文
- 小學五六年級青春期女生健康心理講座PPT
評論
0/150
提交評論