四川宜賓縣橫江片區2024-2025學年新初三開學摸底考(全國I卷)數學試題含解析_第1頁
四川宜賓縣橫江片區2024-2025學年新初三開學摸底考(全國I卷)數學試題含解析_第2頁
四川宜賓縣橫江片區2024-2025學年新初三開學摸底考(全國I卷)數學試題含解析_第3頁
四川宜賓縣橫江片區2024-2025學年新初三開學摸底考(全國I卷)數學試題含解析_第4頁
四川宜賓縣橫江片區2024-2025學年新初三開學摸底考(全國I卷)數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川宜賓縣橫江片區2024-2025學年新初三開學摸底考(全國I卷)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐2.若x=-2是關于x的一元二次方程x2+ax-a2=0的一個根,則a的值為()A.-1或4 B.-1或-4C.1或-4 D.1或43.已知關于x的不等式組至少有兩個整數解,且存在以3,a,7為邊的三角形,則a的整數解有()A.4個 B.5個 C.6個 D.7個4.研究表明某流感病毒細胞的直徑約為0.00000156m,用科學記數法表示這個數是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×1065.如圖,在平面直角坐標系中,半徑為2的圓P的圓心P的坐標為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或56.已知反比例函數y=-2A.圖象必經過點(﹣1,2) B.y隨x的增大而增大C.圖象在第二、四象限內 D.若x>1,則0>y>-27.單項式2a3b的次數是()A.2 B.3 C.4 D.58.實數的相反數是()A.- B. C. D.9.如圖,AB切⊙O于點B,OA=2,AB=3,弦BC∥OA,則劣弧BC的弧長為()A. B. C.π D.10.計算﹣的結果為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點P(3a,a)是反比例函(k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數的表達式為______.12.如圖,垂直于x軸的直線AB分別與拋物線C1:y=x2(x≥0)和拋物線C2:y=(x≥0)交于A,B兩點,過點A作CD∥x軸分別與y軸和拋物線C2交于點C、D,過點B作EF∥x軸分別與y軸和拋物線C1交于點E、F,則的值為_____.13.如圖,在平面直角坐標系中,點O為坐標原點,點P在第一象限,⊙P與x軸交于O,A兩點,點A的坐標為(6,0),⊙P的半徑為,則點P的坐標為_______.14.4是_____的算術平方根.15.如圖,在△ACB中,∠ACB=90°,點D為AB的中點,將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.若AC=6,BC=8,則DB1的長為________.16.如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點D,DE平分∠BDC交BC于點E,則=.三、解答題(共8題,共72分)17.(8分)某公司對用戶滿意度進行問卷調查,將連續6天內每天收回的問卷數進行統計,繪制成如圖所示的統計圖.已知從左到右各矩形的高度比為2:3:4:6:4:1.第3天的頻數是2.請你回答:(1)收回問卷最多的一天共收到問卷_________份;(2)本次活動共收回問卷共_________份;(3)市場部對收回的問卷統一進行了編號,通過電腦程序隨機抽選一個編號,抽到問卷是第4天收回的概率是多少?(4)按照(3)中的模式隨機抽選若干編號,確定幸運用戶發放紀念獎,第4天和第6天分別有10份和2份獲獎,那么你認為這兩組中哪個組獲獎率較高?為什么?18.(8分)已知邊長為2a的正方形ABCD,對角線AC、BD交于點Q,對于平面內的點P與正方形ABCD,給出如下定義:如果,則稱點P為正方形ABCD的“關聯點”.在平面直角坐標系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關聯點”有_____;(2)已知點E的橫坐標是m,若點E在直線上,并且E是正方形ABCD的“關聯點”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設該正方形對角線交點Q的橫坐標是n,直線與x軸、y軸分別相交于M、N兩點.如果線段MN上的每一個點都是正方形ABCD的“關聯點”,求n的取值范圍.19.(8分)如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.求證:∠1=∠2;連結BE、DE,判斷四邊形BCDE的形狀,并說明理由.20.(8分)為響應市政府“創建國家森林城市”的號召,某小區計劃購進A、B兩種樹苗共17棵,已知A種樹苗每棵80元,B種樹苗每棵60元.若購進A、B兩種樹苗剛好用去1220元,問購進A、B兩種樹苗各多少棵?若購買B種樹苗的數量少于A種樹苗的數量,請你給出一種費用最省的方案,并求出該方案所需費用.21.(8分)如圖,AD、BC相交于點O,AD=BC,∠C=∠D=90°.求證:△ACB≌△BDA;若∠ABC=36°,求∠CAO度數.22.(10分)如圖,在平面直角坐標xOy中,正比例函數y=kx的圖象與反比例函數y=的圖象都經過點A(2,﹣2).(1)分別求這兩個函數的表達式;(2)將直線OA向上平移3個單位長度后與y軸交于點B,與反比例函數圖象在第四象限內的交點為C,連接AB,AC,求點C的坐標及△ABC的面積.23.(12分)已知2是關于x的方程x2﹣2mx+3m=0的一個根,且這個方程的兩個根恰好是等腰△ABC的兩條邊長,則△ABC的周長為_____.24.計算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:根據一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進而根據俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點睛:本題考查的知識點是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.2、C【解析】試題解析:∵x=-2是關于x的一元二次方程的一個根,

∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,

整理,得(a+2)(a-1)=0,

解得a1=-2,a2=1.

即a的值是1或-2.

故選A.點睛:一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.又因為只含有一個未知數的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.3、A【解析】

依據不等式組至少有兩個整數解,即可得到a>5,再根據存在以3,a,7為邊的三角形,可得4<a<10,進而得出a的取值范圍是5<a<10,即可得到a的整數解有4個.【詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個整數解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數解有4個,故選:A.此題考查的是一元一次不等式組的解法和三角形的三邊關系的運用,求不等式組的解集應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.4、C【解析】解:,故選C.5、D【解析】

分圓P在y軸的左側與y軸相切、圓P在y軸的右側與y軸相切兩種情況,根據切線的判定定理解答.【詳解】當圓P在y軸的左側與y軸相切時,平移的距離為3-2=1,當圓P在y軸的右側與y軸相切時,平移的距離為3+2=5,故選D.本題考查的是切線的判定、坐標與圖形的變化-平移問題,掌握切線的判定定理是解題的關鍵,解答時,注意分情況討論思想的應用.6、B【解析】試題分析:根據反比例函數y=kx試題解析:A、(-1,2)滿足函數的解析式,則圖象必經過點(-1,2);B、在每個象限內y隨x的增大而增大,在自變量取值范圍內不成立,則命題錯誤;C、命題正確;D、命題正確.故選B.考點:反比例函數的性質7、C【解析】分析:根據單項式的性質即可求出答案.詳解:該單項式的次數為:3+1=4故選C.點睛:本題考查單項式的次數定義,解題的關鍵是熟練運用單項式的次數定義,本題屬于基礎題型.8、A【解析】

根據相反數的定義即可判斷.【詳解】實數的相反數是-故選A.此題主要考查相反數的定義,解題的關鍵是熟知相反數的定義即可求解.9、A【解析】試題分析:連接OB,OC,∵AB為圓O的切線,∴∠ABO=90°,在Rt△ABO中,OA=,∠A=30°,∴OB=,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧長為.故選A.考點:1.切線的性質;2.含30度角的直角三角形;3.弧長的計算.10、A【解析】

根據分式的運算法則即可【詳解】解:原式=,故選A.本題主要考查分式的運算。二、填空題(本大題共6個小題,每小題3分,共18分)11、y=【解析】設圓的半徑是r,根據圓的對稱性以及反比例函數的對稱性可得:πr2=10π解得:r=.∵點P(3a,a)是反比例函y=(k>0)與O的一個交點,∴3a2=k.∴a2==4.∴k=3×4=12,則反比例函數的解析式是:y=.故答案是:y=.點睛:本題主要考查了反比例函數圖象的對稱性,正確根據對稱性求得圓的半徑是解題的關鍵.12、【解析】

根據二次函數的圖象和性質結合三角形面積公式求解.【詳解】解:設點橫坐標為,則點縱坐標為,點B的縱坐標為,∵BE∥x軸,∴點F縱坐標為,∵點F是拋物線上的點,∴點F橫坐標為,∵軸,∴點D縱坐標為,∵點D是拋物線上的點,∴點D橫坐標為,,故答案為.此題重點考查學生對二次函數的圖象和性質的應用能力,熟練掌握二次函數的圖象和性質是解題的關鍵.13、(3,2).【解析】

過點P作PD⊥x軸于點D,連接OP,先由垂徑定理求出OD的長,再根據勾股定理求出PD的長,故可得出答案.【詳解】過點P作PD⊥x軸于點D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).本題考查的是垂徑定理,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.14、16.【解析】試題解析:∵42=16,∴4是16的算術平方根.考點:算術平方根.15、2【解析】

根據勾股定理可以得出AB的長度,從而得知CD的長度,再根據旋轉的性質可知BC=B1C,從而可以得出答案.【詳解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵點D為AB的中點,∴,∵將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案為:2.本題考查的是勾股定理、直角三角形斜邊中點的性質和旋轉的性質,能夠根據勾股定理求出AB的長是解題的關鍵.16、3-【解析】試題分析:因為△ABC中,AB=AC,∠A=36°所以∠ABC=∠ACB=72°因為BD平分∠ABC交AC于點D所以∠ABD=∠CBD=36°=∠A因為DE平分∠BDC交BC于點E所以∠CDE=∠BDE=36°=∠A所以AD=BD=BC根據黃金三角形的性質知,BCAC=5-1EC=所以EC考點:黃金三角形點評:黃金三角形是一個等腰三角形,它的頂角為36°,每個底角為72°.它的腰與它的底成黃金比.當底角被平分時,角平分線分對邊也成黃金比,三、解答題(共8題,共72分)17、1860分【解析】分析:(1)觀察圖形可知,第4天收到問卷最多,用矩形的高度比=頻數之比即可得出結論;(2)由于組距相同,各矩形的高度比即為頻數的比,可由數據總數=某組的頻數÷頻率計算;(3)根據概率公式計算即可;(4)分別計算第4天,第6天的獲獎率后比較即可.詳解:(1)由圖可知:第4天收到問卷最多,設份數為x,則:4:6=2:x,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)抽到第4天回收問卷的概率是;(4)第4天收回問卷獲獎率,第6天收回問卷獲獎率.∵,∴第6天收回問卷獲獎率高.點睛:本題考查了對頻數分布直方圖的掌握情況,根據圖中信息,求出頻率,用來估計概率.用到的知識點為:總體數目=部分數目÷相應頻率.部分的具體數目=總體數目×相應頻率.概率=所求情況數與總情況數之比.18、(1)正方形ABCD的“關聯點”為P2,P3;(2)或;(3).【解析】

(1)正方形ABCD的“關聯點”中正方形的內切圓和外切圓之間(包括兩個圓上的點),由此畫出圖形即可判斷;(2)因為E是正方形ABCD的“關聯點”,所以E在正方形ABCD的內切圓和外接圓之間(包括兩個圓上的點),因為E在直線上,推出點E在線段FG上,求出點F、G的橫坐標,再根據對稱性即可解決問題;(3)因為線段MN上的每一個點都是正方形ABCD的“關聯點”,分兩種情形:①如圖3中,MN與小⊙Q相切于點F,求出此時點Q的橫坐標;②M如圖4中,落在大⊙Q上,求出點Q的橫坐標即可解決問題;【詳解】(1)由題意正方形ABCD的“關聯點”中正方形的內切圓和外切圓之間(包括兩個圓上的點),觀察圖象可知:正方形ABCD的“關聯點”為P2,P3;(2)作正方形ABCD的內切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關聯點”,∴E在正方形ABCD的內切圓和外接圓之間(包括兩個圓上的點),∵點E在直線上,∴點E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據對稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個點都是正方形ABCD的“關聯點”,①MN與小⊙Q相切于點F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.本題考查一次函數綜合題、正方形的性質、直線與圓的位置關系等知識,解題的關鍵是理解題意,學會尋找特殊位置解決數學問題,屬于中考壓軸題.19、(1)證明見解析;(2)四邊形BCDE是菱形,理由見解析.【解析】

(1)證明△ADC≌△ABC后利用全等三角形的對應角相等證得結論.(2)首先判定四邊形BCDE是平行四邊形,然后利用對角線垂直的平行四邊形是菱形判定菱形即可.【詳解】解:(1)證明:∵在△ADC和△ABC中,∴△ADC≌△ABC(SSS).∴∠1=∠2.(2)四邊形BCDE是菱形,理由如下:如答圖,∵∠1=∠2,DC=BC,∴AC垂直平分BD.∵OE=OC,∴四邊形DEBC是平行四邊形.∵AC⊥BD,∴四邊形DEBC是菱形.考點:1.全等三角形的判定和性質;2.線段垂直平分線的性質;3.菱形的判定.20、(1)購進A種樹苗1棵,B種樹苗2棵(2)購進A種樹苗9棵,B種樹苗8棵,這時所需費用為1200元【解析】

(1)設購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,利用購進A、B兩種樹苗剛好用去1220元,結合單價,得出等式方程求出即可;(2)結合(1)的解和購買B種樹苗的數量少于A種樹苗的數量,可找出方案.【詳解】解:(1)設購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,根據題意得:80x+60(12﹣x)=1220,解得:x=1.∴12﹣x=2.答:購進A種樹苗1棵,B種樹苗2棵.(2)設購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,根據題意得:12﹣x<x,解得:x>8.3.∵購進A、B兩種樹苗所需費用為80x+60(12﹣x)=20x+120,是x的增函數,∴費用最省需x取最小整數9,此時12﹣x=8,所需費用為20×9+120=1200(元).答:費用最省方案為:購進A種樹苗9棵,B種樹苗8棵,這時所需費用為1200元.21、(1)證明見解析(2)18°【解析】

(1)根據HL證明Rt△ABC≌Rt△BAD即可;(2)利用全等三角形的性質及直角三角形兩銳角互余的性質求解即可.【詳解】(1)證明:∵∠D=∠C=90°,∴△ABC和△BAD都是Rt△,在Rt△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論