日喀則市2025屆中考模擬最后十套:數學試題(十)考前提分仿真卷含解析_第1頁
日喀則市2025屆中考模擬最后十套:數學試題(十)考前提分仿真卷含解析_第2頁
日喀則市2025屆中考模擬最后十套:數學試題(十)考前提分仿真卷含解析_第3頁
日喀則市2025屆中考模擬最后十套:數學試題(十)考前提分仿真卷含解析_第4頁
日喀則市2025屆中考模擬最后十套:數學試題(十)考前提分仿真卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

日喀則市2025屆中考模擬最后十套:數學試題(十)考前提分仿真卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.2.如圖,在四邊形ABCD中,∠A=120°,∠C=80°.將△BMN沿著MN翻折,得到△FMN.若MF∥AD,FN∥DC,則∠F的度數為()A.70° B.80° C.90° D.100°3.下列各式屬于最簡二次根式的有()A. B. C. D.4.如圖,l1、l2、l3兩兩相交于A、B、C三點,它們與y軸正半軸分別交于點D、E、F,若A、B、C三點的橫坐標分別為1、2、3,且OD=DE=1,則下列結論正確的個數是()①,②S△ABC=1,③OF=5,④點B的坐標為(2,2.5)A.1個 B.2個 C.3個 D.4個5.某幾何體由若干個大小相同的小正方體搭成,其主視圖與左視圖如圖所示,則搭成這個幾何體的小正方體最少有()A.4個 B.5個 C.6個 D.7個6.估計5﹣的值應在()A.5和6之間 B.6和7之間 C.7和8之間 D.8和9之間7.下列四個幾何體中,左視圖為圓的是()A. B. C. D.8.化簡的結果為()A.﹣1 B.1 C. D.9.老師隨機抽查了學生讀課外書冊數的情況,繪制成條形圖和不完整的扇形圖,其中條形圖被墨跡遮蓋了一部分,則條形圖中被遮蓋的數是()A.5 B.9 C.15 D.2210.在0.3,﹣3,0,﹣這四個數中,最大的是()A.0.3 B.﹣3 C.0 D.﹣11.下列計算正確的是()A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2?a4=a612.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.二次函數的圖象如圖,若一元二次方程有實數根,則的最大值為___14.如圖所示,過y軸正半軸上的任意一點P,作x軸的平行線,分別與反比例函數的圖象交于點A和點B,若點C是x軸上任意一點,連接AC、BC,則△ABC的面積為_________.15.函數中,自變量的取值范圍是_____.16.觀察下列一組數,,,,,…探究規律,第n個數是_____.17.如圖,在△ABC中,∠C=90°,D是AC上一點,DE⊥AB于點E,若AC=8,BC=6,DE=3,則AD的長為________.18.點A到⊙O的最小距離為1,最大距離為3,則⊙O的半徑長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數字2,3、1.(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數字是奇數的概率為;(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數字,求這兩個數字之和是3的倍數的概率(用畫樹狀圖或列表等方法求解).20.(6分)解不等式組:并把解集在數軸上表示出來.21.(6分)對于方程x2解:方程兩邊同乘6,得3x﹣2(x﹣1)=1①去括號,得3x﹣2x﹣2=1②合并同類項,得x﹣2=1③解得x=3④∴原方程的解為x=3⑤上述解答過程中的錯誤步驟有(填序號);請寫出正確的解答過程.22.(8分)如圖,方格紙中每個小正方形的邊長均為1,線段AB的兩個端點均在小正方形的頂點上.在圖中畫出以線段AB為一邊的矩形ABCD(不是正方形),且點C和點D均在小正方形的頂點上;在圖中畫出以線段AB為一腰,底邊長為2的等腰三角形ABE,點E在小正方形的頂點上,連接CE,請直接寫出線段CE的長.23.(8分)如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸的正半軸上一點,將拋物線C繞點F旋轉180°,得到新的拋物線C′.(1)求拋物線C的函數表達式;(2)若拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,求m的取值范圍.(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C′上的對應點P′,設M是C上的動點,N是C′上的動點,試探究四邊形PMP′N能否成為正方形?若能,求出m的值;若不能,請說明理由.24.(10分)某學校后勤人員到一家文具店給九年級的同學購買考試用文具包,文具店規定一次購買400個以上,可享受8折優惠.若給九年級學生每人購買一個,不能享受8折優惠,需付款1936元;若多買88個,就可享受8折優惠,同樣只需付款1936元.請問該學校九年級學生有多少人?25.(10分)先化簡,再求值:,其中與2,3構成的三邊,且為整數.26.(12分)如圖,直線y=﹣x+2與反比例函數(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.(1)求a,b的值及反比例函數的解析式;(2)若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標;(3)在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.27.(12分)如圖,已知矩形ABCD中,連接AC,請利用尺規作圖法在對角線AC上求作一點E使得△ABC∽△CDE.(保留作圖痕跡不寫作法)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】先將25100用科學記數法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D2、B【解析】

首先利用平行線的性質得出∠BMF=120°,∠FNB=80°,再利用翻折變換的性質得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,進而求出∠B的度數以及得出∠F的度數.【詳解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,

∴∠BMF=120°,∠FNB=80°,

∵將△BMN沿MN翻折得△FMN,

∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,

∴∠F=∠B=180°-60°-40°=80°,

故選B.主要考查了平行線的性質以及多邊形內角和定理以及翻折變換的性質,得出∠FMN=∠BMN,∠FNM=∠MNB是解題關鍵.3、B【解析】

先根據二次根式的性質化簡,再根據最簡二次根式的定義判斷即可.【詳解】A選項:,故不是最簡二次根式,故A選項錯誤;B選項:是最簡二次根式,故B選項正確;C選項:,故不是最簡二次根式,故本選項錯誤;D選項:,故不是最簡二次根式,故D選項錯誤;

故選:B.考查了對最簡二次根式的定義的理解,能理解最簡二次根式的定義是解此題的關鍵.4、C【解析】

①如圖,由平行線等分線段定理(或分線段成比例定理)易得:;②設過點B且與y軸平行的直線交AC于點G,則S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G為AC中點,所以,S△AGB=S△BGC=,從而得結論;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得結論;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發生變化,所以④錯誤.【詳解】解:①如圖,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴,故①正確;②設過點B且與y軸平行的直線交AC于點G(如圖),則S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=×1×1=,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=,同理得:G為AC中點,∴S△ABG=S△BCG=,∴S△ABC=1,故②正確;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴,∴EF=1.即OF=5,故③正確;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發生變化,故④錯誤;故選C.本題考查了圖形與坐標的性質、三角形的面積求法、相似三角形的性質和判定、平行線等分線段定理、函數圖象交點等知識及綜合應用知識、解決問題的能力.考查學生數形結合的數學思想方法.5、B【解析】

由主視圖和左視圖確定俯視圖的形狀,再判斷最少的正方體的個數.【詳解】由主視圖和左視圖可確定所需正方體個數最少時俯視圖(數字為該位置小正方體的個數)為:則搭成這個幾何體的小正方體最少有5個,故選B.【點睛】本題考查了由三視圖判斷幾何體,根據主視圖和左視圖畫出所需正方體個數最少的俯視圖是關鍵.【詳解】請在此輸入詳解!請在此輸入點睛!6、C【解析】

先化簡二次根式,合并后,再根據無理數的估計解答即可.【詳解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值應在7和8之間,故選C.本題考查了估算無理數的大小,解決本題的關鍵是估算出無理數的大小.7、A【解析】

根據三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長方形,C.圓錐的左視圖是等腰三角形,D.圓臺的左視圖是等腰梯形,故符合題意的選項是A.錯因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.8、B【解析】

先把分式進行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.9、B【解析】

條形統計圖是用線段長度表示數據,根據數量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.扇形統計圖是用整個圓表示總數用圓內各個扇形的大小表示各部分數量占總數的百分數.通過扇形統計圖可以很清楚地表示出各部分數量同總數之間的關系.用整個圓的面積表示總數(單位1),用圓的扇形面積表示各部分占總數的百分數.【詳解】課外書總人數:6÷25%=24(人),看5冊的人數:24﹣5﹣6﹣4=9(人),故選B.本題考查了統計圖與概率,熟練掌握條形統計圖與扇形統計圖是解題的關鍵.10、A【解析】

根據正數大于0,0大于負數,正數大于負數,比較即可【詳解】∵-3<-<0<0.3∴最大為0.3故選A.本題考查實數比較大小,解題的關鍵是正確理解正數大于0,0大于負數,正數大于負數,本題屬于基礎題型.11、D【解析】

根據合并同類項法則、積的乘方及同底數冪的乘法的運算法則依次計算后即可解答.【詳解】∵3a﹣2a=a,∴選項A不正確;∵a2+a5≠a7,∴選項B不正確;∵(ab)3=a3b3,∴選項C不正確;∵a2?a4=a6,∴選項D正確.故選D.本題考查了合并同類項法則、積的乘方及同底數冪的乘法的運算法則,熟練運用法則是解決問題的關鍵.12、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據平行線的性質得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質的應用,能正確作出輔助線是解此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】試題解析::∵拋物線的開口向上,頂點縱坐標為-3,∴a>1.-=-3,即b2=12a,∵一元二次方程ax2+bx+m=1有實數根,∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,∴m的最大值為3,14、1.【解析】

設P(0,b),∵直線APB∥x軸,∴A,B兩點的縱坐標都為b,而點A在反比例函數y=的圖象上,∴當y=b,x=-,即A點坐標為(-,b),又∵點B在反比例函數y=的圖象上,∴當y=b,x=,即B點坐標為(,b),∴AB=-(-)=,∴S△ABC=?AB?OP=??b=1.15、【解析】

根據被開方式是非負數列式求解即可.【詳解】依題意,得,解得:,故答案為:.本題考查了函數自變量的取值范圍,函數有意義時字母的取值范圍一般從幾個方面考慮:①當函數解析式是整式時,字母可取全體實數;②當函數解析式是分式時,考慮分式的分母不能為0;③當函數解析式是二次根式時,被開方數為非負數.④對于實際問題中的函數關系式,自變量的取值除必須使表達式有意義外,還要保證實際問題有意義.16、【解析】

根據已知得出數字分母與分子的變化規律,分子是連續的正整數,分母是連續的奇數,進而得出第n個數分子的規律是n,分母的規律是2n+1,進而得出這一組數的第n個數的值.【詳解】解:因為分子的規律是連續的正整數,分母的規律是2n+1,

所以第n個數就應該是:,

故答案為.此題主要考查了數字變化規律,這類題型在中考中經常出現.對于找規律的題目首先應找出哪些部分發生了變化,是按照什么規律變化的.解題的關鍵是把數據的分子分母分別用組數n表示出來.17、1【解析】

如圖,由勾股定理可以先求出AB的值,再證明△AED∽△ACB,根據相似三角形的性質就可以求出結論.【詳解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案為1本題考查了勾股定理的運用,相似三角形的判定及性質的運用,解答時求出△AED∽△ACB是解答本題的關鍵.18、1或2【解析】

分類討論:點在圓內,點在圓外,根據線段的和差,可得直徑,根據圓的性質,可得答案.【詳解】點在圓內,圓的直徑為1+3=4,圓的半徑為2;點在圓外,圓的直徑為3?1=2,圓的半徑為1,故答案為1或2.本題考查點與圓的位置關系,關鍵是分類討論:點在圓內,點在圓外.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)這兩個數字之和是3的倍數的概率為.【解析】

(1)在標有數字1、2、3的3個轉盤中,奇數的有1、3這2個,根據概率公式可得;(2)用列表法列出所有情況,再計算概率.【詳解】解:(1)∵在標有數字1、2、3的3個轉盤中,奇數的有1、3這2個,∴指針所指扇形中的數字是奇數的概率為,故答案為;(2)列表如下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,所有等可能的情況數為9種,其中這兩個數字之和是3的倍數的有3種,所以這兩個數字之和是3的倍數的概率為=.本題考核知識點:求概率.解題關鍵點:列出所有情況,熟記概率公式.20、不等式組的解集為﹣7<x≤1,將解集表示在數軸上表示見解析.【解析】試題分析:先解不等式組中的每一個不等式,再根據大大取較大,小小取較小,大小小大取中間,大大小小無解,把它們的解集用一條不等式表示出來.試題解析:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在數軸上表示為:.考點:解一元一次不等式組;在數軸上表示不等式的解集.點睛:分別求出各不等式的解集,再求出其公共解集即可.不等式組的解集在數軸上表示的方法:把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),數軸上的點把數軸分成若干段,如果數軸的某一段上面表示解集的線的條數與不等式的個數一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.21、(1)錯誤步驟在第①②步.(2)x=4.【解析】

(1)第①步在去分母的時候,兩邊同乘以6,但是方程右邊沒有乘,另外在去括號時沒有注意到符號的變化,所以出現錯誤;(2)注重改正錯誤,按以上步驟進行即可.【詳解】解:(1)方程兩邊同乘6,得3x﹣2(x﹣1)=6①去括號,得3x﹣2x+2=6②∴錯誤步驟在第①②步.(2)方程兩邊同乘6,得3x﹣2(x﹣1)=6去括號,得3x﹣2x+2=6合并同類項,得x+2=6解得x=4∴原方程的解為x=4本題考查的解一元一次方程,注意去分母與去括號中常見錯誤,符號也經常是出現錯誤的原因.22、作圖見解析;CE=4.【解析】分析:利用數形結合的思想解決問題即可.詳解:如圖所示,矩形ABCD和△ABE即為所求;CE=4.點睛:本題考查作圖-應用與設計、等腰三角形的性質、勾股定理、矩形的判定和性質等知識,解題的關鍵是學會利用思想結合的思想解決問題.23、(1);(2)2<m<;(1)m=6或m=﹣1.【解析】

(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,由此即可解決問題;(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,則有,解不等式組即可解決問題;(1)情形1,四邊形PMP′N能成為正方形.作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,推出PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系數法即可解決問題;情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系數法即可解決問題.【詳解】(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,∴拋物線C的函數表達式為.(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,則有,解得2<m<,∴滿足條件的m的取值范圍為2<m<.(1)結論:四邊形PMP′N能成為正方形.理由:1情形1,如圖,作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,∴PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵點M在上,∴,解得m=﹣1或﹣﹣1(舍棄),∴m=﹣1時,四邊形PMP′N是正方形.情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍棄),∴m=6時,四邊形PMP′N是正方形.綜上所述:m=6或m=﹣1時,四邊形PMP′N是正方形.24、1人【解析】解:設九年級學生有x人,根據題意,列方程得:,整理得0.8(x+88)=x,解之得x=1.經檢驗x=1是原方程的解.答:這個學校九年級學生有1人.設九年級學生有x人,根據“給九年級學生每人購買一個,不能享受8折優惠,需付款1936元”可得每個文具包的花費是:元,根據“若多買88個,就可享受8折優惠,同樣只需付款1936元”可得每個文具包的花費是:,根據題意可得方程,解方程即可.25、1【解析】試題分析:先進行分式的除法運算,再進行分式的加減法運算,根據三角形三邊的關系確定出a的值,然后代入進行計算即可.試題解析:原式=,∵a與2、3構成△ABC的三邊,∴3?2<a<3+2,即1<a<5,又∵a為整數,∴a=2或3或4,∵當x=2或3時,原分式無意義,應舍去,∴當a=4時,原式==126

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論