




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
AgendaFoundationCh1~4ImagingSystem,Digitalization,Display,SoftwareCh5~8Histogram,PointOperations,AlgebraicOperations,GeometricOperationsTheoryCh9~12LinearSystem,FourierFrequencyTransform,FilterDesign,DiscreteSamplingCh13~15OrthogonalRadicleTransform,WaveletTime-frequencyTransform,OpticalFunctionTransformApplicationCh16~20ImageRestoration,Compression,PatternRecognitionCh21~22ColorandMulti-SpectralImageProcessing,ThreeDimensionImageProcessing
mathematicalmodelThemodelofimagedegradationandrestorationasfollow。Imagedegradationiscausedbysystemperformanceandnoise.Restorationisachievedthroughrehabilitatingfilter(inversefilter).16.2ClassicalRestoration
GeometricMeanFiltersNoticethatif=1,Eqreducestoadeconvolutionfilter.If=1/2and=1,itreducestoPSEfilter.ItisthegeometricmeanbetweenordinarydeconvolutionandWienerdeconvolution.Soitisalsocalledgeometricmeanfilter.Itiscommonpractice,however,torefertothemoregeneralfiltermentionedaboveasthegeometricmeanfilter.UnconstrainedRestoration Ifn=0orifweknownothingaboutthenoise,wecansetuptherestorationasaleastsquaresminimizationproblem.e(f)=g-Hf W(f)=(g-Hf)t(g-Hf)Settingtozerothederivativeoff,yieldsf=H-1gConstrainedLeastSquaresRestoration
Introduceintotheminimizationtheconstraintthatthenormsofeachsideofg-Hf=nbethesame,thatis,Nowwecansetuptheproblemastheminimizationof
WhereQisamatrixweselecttodefinesomelinearoperatoronfandλisaconstantcalledaLagrangemultiplier.TheabilitytospecifyQgivesusflexibilityinsettingthegoaloftherestoration.Asbefore,wesettozerothederivativeofW(f)withrespecttof:Whereisaconstantthatmustbeadjustedsothattheconstraintofaboveissatisfied.16.5Superresolution
incoherenttransferfunctionofanopticalsystemistheautocorrelationfunctionofthepupilfunction.Restorationproceduresthatseektorecoverinformationbeyondthediffractionlimitarereferredtoassuperresolutiontechnique.
Harris’Technique
Harristhoughtthatitshouldbepossibletoreconstructthatobjectininfinitedetailfromitsdiffraction-limitedimage.Thetechniqueinvolvesapplyingthesamplingtheorem,withdomainsreversed,toobtainasystemoflinearequationsthatcanbesolvedforvaluesofthesignalspectrumoutsidethediffraction-limitedpassband.
SuccessiveEnergyReduction
Itinvolvessuccessivelyenforcingspace-limitednessupontheimage,whilekeepingtheknownlow-frequencyportionofthespectrumintact.Noticethatbandlimitingthespectrumcauseg0(x)nolongertobespacelimited.Thefirststepoftherestorationisenforcingspace-limitednessupong0(x)bysettingittozerooutsidethedomainofthepulse.Thesecondstepinvolvesreplacing.Theconvergencegenerallybecomesratherslowafterthefirstfewsteps.Small-KernelConvolution
Unlesstheimageisseverelyoversampled,thesignalspectrum,andconsequentlytherestorationMTF,willnormallyextendmostofthewaytothefoldingfrequencybeforeitdiesout.FromthesimilaritytheoremoftheFouriertransform,weknowthatifthetransferfunctionisabroad,theimpulseresponsewillbenarrow.Thus,theconvolutionkernelforimplementingarestorationPSFmightwellbezero,orapproximatelyso,exceptwithinareasonablysmallradiusabouttheorigin.Inthatcase,themajorityoftheoperationsrequiredforanN-by-Nconvolutionwillcontributelittleornothingtotherestoration.Truncatingthekernel
Asimplerapproachtosmall-kernelconvolutionismerelytotruncatethePSFarraytosomeacceptablysmallsize.MultiplyingthePSFbyasquarepulseconvolvestheMTFwithasin(x)/xfunction.UnlessthePSFisspatiallybounded,thiscanalteritstransferfunctionsignificantly.KernelDecomposition
Modernimage-processingsystemoftenincorporatespecialhardwareforhigh-speedconvolutionwithasmallkernel.ThishardwarebecomesusefulwhenanM-by-Mkernelisdecomposedintoasetofsmallerkernelsthatarethenappliedsequentially.Forexample,(M-1)/2kernelsofsizethreebythreewillimplementanM-by-Mconvolution.WhilethiscannotsubstituteexactlyforanarbitraryM-by-Mkernel,theresultisoftenagoodapproximation.16.216.2ClassicalRestoration16.3LinearAlgebraicRestoration16.4restorationoflessrestricteddegradations16.5Superresolution16.6SystemIdentification16.7NoiseModeling16.8Implementation16.9SummaryAgendaFoundationCh1~4ImagingSystem,Digitalization,Display,SoftwareCh5~8Histogram,PointOperations,AlgebraicOperations,GeometricOperationsTheoryCh9~12LinearSystem,FourierFrequencyTransform,FilterDesign,DiscreteSamplingCh13~15OrthogonalRadicleTransform,WaveletTime-frequencyTransform,OpticalFunctionTransformApplicationCh16~20ImageRestoration,Compression,PatternRecognitionCh21~22ColorandMulti-SpectralImageProcessing,ThreeDimensionImageProcessingChapter17
imagecompressionSummaryLosslesscompressionLossyimagecodingImagetransformcodingImagecompressionDatapropertyredundantirrelevantDatacompressionTypeofcompressionDeletedcontentRecoveryabilityLosslesscompressionRedundantinformationExactrecoveryLossycompression1.Redundantinformation2.IrrelevantinformationApproximatereconstructionLosslesscompressiontechniquesDictionary-basedtechniquesStatistics-basedtechniqueslosslesscompression–dictionary-basedtechniques
Run-LengthEncoding:Storeacodespecifieditsgrayvalue,followedbythelengthoftherunmethod:①grayvalue+number;②grayvalue+thenumberofendrowForexample:
PCXformatlosslesscompression–dictionary-basedtechniquesLZW
coding:Whenastringoccursfirstinthetable,thestringanditsassignedcodearestoredinfull.Thereafter,whenthatstringoccursagain,onlyitscodeisstored.property:thestringtableisdynamicallybuiltduringcompression,butitneedn’tbestoredwiththecompressionfile:thedecompressionalgorithmcanreconstructitfromthecompressedfile.Bythewaytheredundancyissqueezedoutofthefile.
Forexample:GIF.Losslesscompression-statisticalmethodsTheprobabilityofsourceofmessages
are:whereKisthetotalnumbsofmessages.ameasurementoftheShannoninformation:
probabilityof
istheentropyofthemessage
redundancy。If,theformularepresentsthelowestboundonaveragewordlengthforlosslesscompression.
suchas:,thelowestboundonlosslesscompressionforbinarycodinglosslesscompression–statisticalmethods
Huffmancoding:alosslessstatisticalmethodwithavariable-lengthcodeforminimumredundancy.Statichuffmancoding:anencodingtreeconstructedinadvanceofcompressionfromatableofoccurrenceprobabilitiesofthepossibledataDynamichuffmancoding:constructstheencodingtreeduringthecompressionprocessIt’saninformation-keptcoding,orentropy-keptone,orentropyonelosslesscompression–statisticalmethods
thealgorithmofHuffmancoding:1)Arrayoriginaldatabythesizeofprobability;2)Taketwosymbolswithminimumprobabilityasleafnode
(thesmalloneisleftnode,andthebigoneisrightnode)toconstructthefathernodewiththesumofthetwoprobabilities;3)Jointhenewnodesintonodelistbyprobabilitysize;4)Repeat2-3tillallthenodesjoinintonodetable;5)Supposealltheleftnodesare0,andtherightoneis1.Fromrootnodetoleafone,pathcodeisthehuffmanoneofthenodes.exampleofhuffmancodingsetofmessagesourcea1a2a3a4a5a6probability0.40.30.10.10.060.04codeda1a2a3a4a5a6codeword10001101000101001011Codelength123455entropy:Meancodelengthlossycodingscalarquantization:Thequantizationschememinimizesthemeansquareerror.Twoproperties:EachdecisionthresholdfallsexactlyinmidvaluebetweentwoadjacentrepresentativelevelsEachrepresentativelevelfallsatthecentroidofthesectionofthePDF(ProbabilityDensityFunction)betweentwosuccessivedecisionthresholds.lossycodingdistortion:
errorbetweenreconstructionimagegandoriginalonefRatedistortionfunction:minimummeaninformationatcertaindistortion.Itgivesthelowestlimitofmeaninformation,i.ethelimitofinformationcompression(codingrateatalloweddistortion(suchasthenumberofeachpixel),forexample,when,codingrateis,Theentropyofthereconstructionerror
TheequalityholdsinthisrelationifthebalanceimagehasstatisticallyindependentpixelsandGaussianpdfLossycoding-ratedistortionfunction:ForanycertaindistortionD,arateis
arbitrarilyclosetothecodingmethodofR(D),andthemeandistortionisarbitrarilyclosetoDCodingwitharatethatislowerthanR(D),wecannotfindacodewhosedistortionisnotlessthanDtransformcoding
themeaningofminimumdistortionorthogonaltransform0DR(D)drentropycodingratedistortionfunctionThedistortionbetweenoriginalimagef(x,y)andreconstructionimage
g(x,y)isquantifiedbythemeansquareerror:doesitexistsuchtransformT,andatthesametimeDisminimumminimumdistortiontransformcodingisthemostefficientatgivendistortionratebyratedistortionfunction第8頁(共17頁)transformcodingTransformcodingisinspiredby
theanalysisoftime/frequencydomainconversioninthedigitalsignalprocessingexample-bitdistributionofimagequantizationcoding
bitdistributionofscalarYXY=TXcoordinaterotationtransformY=XXYBitofscalarquantizationdecreaseatthesamequantizationerrorsaftercoordinaterotationtransformcodingPrinciple(squeezeredundancybyfollowingmethod):Centereddistribution:reducebitofquantization;Squeezeredundancy:prepareforlossycompression;Chartoftransformcodingandencodingsystem+xW:noisecomingfrombitdistributionA:filtertransformcodingPropertyoftransformcoding:Generallyhashighcompressionrate:suchasSVD
transformcoding.becauseoftransform,greatlysqueezesinformationredundancyandstructureredundancy;Greatercalculation:suchasinversionprocessofT,sogenerallyusesnormalizationorthogonalmatrixT,here:transformcoding----K-LtransformSupposedatavectortransformmatrix,thenorthogonaltransformcanbeexpressed,theresultvectoris,inversetransformis.codingmeansquareerroris,whereiscovariancematrixofX,andfindwhenisminimum.wecangettheconditionofminimumbyLagrangemultipliermethod:,andthatiswhereischaracteristicmatrixof.wecanhavetheconclusionthat:basevectorTofoptimalorthogonaltransformisthecharacteristicmatrixofdatavectorXcovariancematrix.TheoptimalorthogonaltransformTisthefamousKanhuman-Loevetransformtransformcoding---K-LtransformcodingandencodingprocessSupposeXisN×1randomvector,eachcomponentX1ofXcanbeestimatedLvectorsamples.CovariancematrixofXis.K-Lorthogonaltransformissuchalineartransform,wheretherowofAischaracteristicmatrixof,.TransformedcovariancematrixYcanbereasonedbycovariancematrixofX
,whereischaracteristicvalueof.inversetransformofK-Lis.Forexample:One3×1randomvectorXhasfollowingcovariancematrix:Thecharacteristicvalueandcharacteristicvectorare:Foravectorwhosemeanvalueiszero,thek-LtransformresultisIfignoresthesmalltransformbaseinA,itcanreducethedimensionofY:reconstructionprocess:standarddeviationoflossycompression:(cancontroltheerror)IfCissingularity,itcanachievehighercompressionratetransformcodingcoderateallocation:generally,allocatecodelengthbythesizeofcovariancematrixsquareerroroftransformresultimage.thebigoneallocateslongcode,andthesmalloneallocatesshortcode.transformcodingevaluationandusingofminimumdistortionorthogonaltransformcoding:iscalledk-Ltransform,orprincipalcomponentanalysisLargecalculation,doesnothasfastalgorithmItisimprovedtoSVD.transformbaseTisnotbasedonoriginalimage,butonstatisticalinformationoforiginalimage,andthismakesitpossibletousethesametransformbaseforstatisticallysimilarimages;WeusuallyusefirstMarkovprocesstosimulateuniversaltransformbase,
anditisespeciallyeffectivefornaturalimageGenerally,itisusedtocomparewithnewcodingalgorithm;transformcoding----first-orderMarkov
processMarkovprocess:astationaryrandomsequenceiscalledafirst-orderMarkovsequenceiftheconditionalprobabilityofeachelementinthesequencedependsonlyuponthevalueoftheimmediatelyprecedingelement.ThepossibilitytoimproveK-LtransformcodingbyMarkovprocess:thedistributionofmostgrayimagescanbesimulatedbyfirst-orderMarkovprocess,thatiseachpixelvalueonlyhasrelationshipwithpreviouspixel,andthecorrelationiscertainknowncorrelationcoefficient,wecangetcovariancematrixoforiginaldata(normalized).SowecangetK-Ltransformbase(basisimage),andthebaseissuitableformostimages.
basicimagederivationofK-LtransformonapproximateconditionofMarkovprocess
Supposetheknowncorrelationcoefficientp(0<p≤1),Covariancematrixoftheoriginaldatais:,wecancalculatetransformbaseofK-LbyC.forexample,p=0.91,N=8thetransformmatrixisThecorrespondingcharacteristicvalue,theenergyandpercentofanteriorMdiagonalelements,areasbelow:SowecangetK-Ltransformhasgoodconcentrationofenergy,andcompletelyreducesCorrelation.K-LtransformcanapplythesametransformbasetoagroupofstatisticallysimilarobjectsMostnaturalimagesarestatisticallysimilar,andwecanexpressthesimilaritywithMarkovprocessatcorrelationcoefficient1;sowecangetageneralk-Ltransformbasefornaturalimages;Whencomparedwithotheralgorithms,weusuallyuseK-Ltransformcoding,whichissimilarwithfirst-orderMarkovprocessatcorre
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二人聯營合同協議書范本
- 江川縣2025年數學五年級第二學期期末經典試題含答案
- 漳州衛生職業學院《合唱》2023-2024學年第一學期期末試卷
- 江西省吉安八中學2025屆初三下第二次測試(數學試題理)試題含解析
- 餐飲業工作合同
- 南京中醫藥大學翰林學院《論文寫作與學術規范》2023-2024學年第一學期期末試卷
- 西安交通大學城市學院《體育舞蹈I》2023-2024學年第一學期期末試卷
- 山東省濰坊市市級名校2025年中考英語試題命題比賽模擬試卷(24)含答案
- 潼關縣2025屆三年級數學第二學期期末質量跟蹤監視試題含解析
- 山東女子學院《醫護職業暴露及安全防護》2023-2024學年第二學期期末試卷
- GB/T 12939-2002工業車輛輪輞規格系列
- 送元二使安西公開課課件
- 資源昆蟲學-傳粉昆蟲
- 壓花藝術課件
- DB32T4220-2022消防設施物聯網系統技術規范-(高清版)
- 兒童抑郁量表CDI
- 生物化學-脂類課件
- Q∕SY 02098-2018 施工作業用野營房
- DB62∕T 3176-2019 建筑節能與結構一體化墻體保溫系統應用技術規程
- 八大特殊危險作業危險告知牌
- 半橋LLC諧振變換器設計與仿真
評論
0/150
提交評論