2025年春北師版數學八年級下冊 1.3 第2課時 三角形三邊的垂直平分線及作圖 教案_第1頁
2025年春北師版數學八年級下冊 1.3 第2課時 三角形三邊的垂直平分線及作圖 教案_第2頁
2025年春北師版數學八年級下冊 1.3 第2課時 三角形三邊的垂直平分線及作圖 教案_第3頁
2025年春北師版數學八年級下冊 1.3 第2課時 三角形三邊的垂直平分線及作圖 教案_第4頁
2025年春北師版數學八年級下冊 1.3 第2課時 三角形三邊的垂直平分線及作圖 教案_第5頁
已閱讀5頁,還剩1頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1.3線段的垂直平分線第2課時三角形三邊的垂直平分線與作圖教學內容第1課時等腰三角形的性質課時1核心素養目標1.會用數學的眼光觀察現實世界:經歷探索、猜測、能夠證明線段的垂直平分線相交于一點這一定理,進一步發展學生的推理證明意識和能力.2.會用數學的思維思考現實世界:會用尺規作出“已知底邊及底邊上的高”的等腰三角形,體會解決問題的方法,發展實踐能力和創新意識.3.會用數學的語言表示現實世界:有意識地培養學生對文字語言、符號語言和圖形語言的轉換能力,關注證明過程及其表達的合理性.知識目標理解并掌握三角形三邊的垂直平分線的性質,能夠運用其解決實際問題.2.能夠利用尺規作出三角形的垂直平分線.教學重點理解并掌握三角形三邊的垂直平分線的性質,能夠運用其解決實際問題.教學難點理解并掌握三角形三邊的垂直平分線的性質,能夠運用其解決實際問題.教學準備課件教學過程主要師生活動設計意圖一、情境導入二、探究新知當堂練習,鞏固所學創設情境,導入新知教師敘述:某學校為了方便學生生活,計劃在三個宿舍樓A、B、C之間修建一個食堂,試問該食堂應建于何處,才能使得它到宿舍樓的距離相等?證一證.師生活動:教師留時間給學生思考,再把實際生活問題轉化成數學模型:在△ABC中,如何找到一點P使得它到三角形三個頂點距離相等?追問:在△ABC中,如何找到一點P使得它到三角形三個頂點距離相等?師生活動:引導學生根據上節課學習的線段的垂直平分線的判定,推斷這個點是否是在三邊的垂直平分線上.然后實際求證:三角形三邊的垂直平分線交于一點,并且這一點到三角形三個頂點的距離相等.老師點撥:要證明三條直線相交于一點,只要證明其中兩條直線的交點在第三條直線上即可.小組合作,探究概念和性質知識點一:三角形三邊的垂直平分線的性質合作探究:已知:如圖,在△ABC中,邊AB的垂直平分線與邊BC的垂直平分線相交于點P.求證:邊AC的垂直平分線經過點P,且PA=PB=PC.師生活動:教師寫出已知和求證,引導學生分析:鼓勵學生試試看,你會寫出證明過程嗎?證明:連接PA,PB,PC.∵點P在AB,AC的垂直平分線上,∴PA=PB,PA=PC(線段垂直平分線上的點到線段兩端距離相等).∴PB=PC.∴點P在BC的垂直平分線上(到線段兩端距離相等的點在線段的垂直平分線上).師生活動:學生書寫證明過程的時候教師進行巡視,尋找有代表性的做法安排板書.然后共同歸納:定理:三角形三條邊的垂直平分線相交于一點,并且這一點到三個頂點的距離相等.應用格式:∵點P為△ABC三邊垂直平分線的交點,∴PA=PB=PC.試一試:分別作出銳角三角形、直角三角形、鈍角三角形三邊的垂直平分線,說明交點分別在什么位置.師生活動:讓學生自己嘗試用尺規作圖,小組討論交流得出結論.銳角三角形三邊的垂直平分線交點在三角形內;直角三角形三邊的垂直平分線交點在斜邊中點處;鈍角三角形三邊的垂直平分線交點在三角形外.知識點二:尺規作圖做一做:(1)已知三角形的一條邊及這條邊上的高,你能作出三角形嗎?如果能,能作幾個?所作出的三角形都全等嗎?已知:三角形的一條邊a和這邊上的高h.求作:△ABC,使BC=a,BC邊上的高為h.提示:能作出無數個這樣的三角形,它們并不全等.已知等腰三角形的底及底邊上的高,你能用尺規作出等腰三角形嗎?能作幾個?這樣的等腰三角形只有兩個,并且它們是全等的,分別位于已知底邊的兩側.師生活動:學生自己嘗試用尺規作出所求作的三角形,小組討論交流得出結論.想一想:如何作出一個已知底及底邊上的高的等腰三角形呢?典例精析例已知:線段a,h.求作:△ABC,使AB=AC,BC=a,高AD=h.作法:1.作線段BC=a;2.作線段BC的垂直平分線l交BC于點D;3.在l上作線段DA,使DA=h.4.連接AB,AC.則△ABC為所求的等腰三角形.2.已知直線l和線外一點P,利用尺規作l的垂線,使它經過點P.作法:(1)先以P為圓心,大于點P到直線l的垂直距離R為半徑作圓,交直線l于A,B.(2)分別以A、B為圓心,大于R的長為半徑作圓,相交于C、D兩點.(3)過兩交點作直線l',此直線為l過P的垂線.師生活動:學生嘗試作圖,學生代表展示并闡述作法,教師進行梳理.教師總結:常用尺規作圖法作線段的垂直平分線.回顧導入:食堂應建在三個宿舍樓A、B、C的垂直平分線上,才能使得它到宿舍樓的距離相等.請畫出這個位置.師生活動:學生在教師的引導下,得出解題思路:如圖所示,連接AB、BC、AC,分別作三條線段的垂直平分線,即點P為所求.然后完成作圖.當堂練習,鞏固所學1.如圖,等腰△ABC中,AB=AC,∠A=20°.線段AB的垂直平分線交AB于D,交AC于E,連接BE,則∠CBE等于()A.80°B.70°C.60°D.50°2.如圖所示,在△ABC中,∠B=22.5°,AB的垂直平分線交BC于點D,DF⊥AC于點F,并與BC邊上的高AE交于G.求證:EG=EC.3.已知:線段a.求作:△ABC,使∠ACB=90°,AC=BC=a.設計意圖:用簡單的實際生活問題引入新課,讓學生感悟數學問題在實際生活中的應用,激發學生的學習興趣,為下一步探究鋪墊.設計意圖:逐步拆解問題,讓學生學會倒推分析的思維方法,引出本節內容的重點.設計意圖:讓學生利用證明的方法掌握三角形三邊垂直平分線的性質,并掌握其證明的方法和步驟.設計意圖:加深學生對任意“三角形三條邊的垂直平分線相交于一點并且這一點到三個頂點的距離相等”這一定理的認知.設計意圖:(1)這樣的三角形能畫出無數個,由于高的位置可以不同,因此所畫出的三角形不都全等.設計意圖:(2)能作出兩個三角形,由于等腰三角形底邊上高的位置只能在底邊的垂直平分線上,因此可以在已知邊的兩側作兩個三角形,這兩個三角形全等.設計意圖:回憶線段的垂直平分線的作法,鍛煉和鞏固學生的作圖能力,培養學生聯系和應用能力.設計意圖:首尾呼應,讓學生感悟數學知識在生活中的重要性,在問題的引導下,理解作圖過程的合理性,提高作圖能力.設計意圖:考查作三角形中線段垂直平分線的運用.設計意圖:考查作三角形中線段垂直平分線的運用.設計意圖:考查線段垂直平分線性質的運用,以及垂直平分線的作圖能力.板書設計1.1.1等腰三角形1.定理:三角形三條邊的垂直平分線相交于一點,并且這一點到三個頂點的距離相等.應用格式:∵點P為△ABC三邊垂直平分線的交點,∴PA=PB=PC.課后小結1.定理:三角形三條邊的垂直平分線相交于一點,并且這一點到三個頂點的距離相等.2.已知等腰三角形的底邊和底邊上的高作等腰三角形.教學反思第2課時運用線段垂直平分線的性質定理和判定定理解決問題,主要內容包括

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論