




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省贛州尋烏縣二中2025屆高三下學(xué)期單科質(zhì)量檢查數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖在一個(gè)的二面角的棱有兩個(gè)點(diǎn),線段分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于棱,且,則的長為()A.4 B. C.2 D.2.已知為圓的一條直徑,點(diǎn)的坐標(biāo)滿足不等式組則的取值范圍為()A. B.C. D.3.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為11,則圖中的判斷條件可以為()A. B. C. D.4.已知函數(shù)的零點(diǎn)為m,若存在實(shí)數(shù)n使且,則實(shí)數(shù)a的取值范圍是()A. B. C. D.5.已知函數(shù)在上都存在導(dǎo)函數(shù),對(duì)于任意的實(shí)數(shù)都有,當(dāng)時(shí),,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.6.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.7.設(shè)集合,,則()A. B.C. D.8.已知集合,集合,那么等于()A. B. C. D.9.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時(shí),表示收入完全平等.勞倫茨曲線為折線時(shí),表示收入完全不平等.記區(qū)域?yàn)椴黄降葏^(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對(duì)于下列說法:①越小,則國民分配越公平;②設(shè)勞倫茨曲線對(duì)應(yīng)的函數(shù)為,則對(duì),均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④10.已知函數(shù),且關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍().A. B. C. D.11.如圖所示,三國時(shí)代數(shù)學(xué)家在《周脾算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個(gè)全等的直角三角形及一個(gè)小正方形(陰影),設(shè)直角三角形有一個(gè)內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲200顆米粒(大小忽略不計(jì),取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.20 B.27 C.54 D.6412.已知集合,則集合的非空子集個(gè)數(shù)是()A.2 B.3 C.7 D.8二、填空題:本題共4小題,每小題5分,共20分。13.在中,點(diǎn)在邊上,且,設(shè),,則________(用,表示)14.已知,則__________.15.函數(shù)在上的最小值和最大值分別是_____________.16.已知,,,的夾角為30°,,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)等差數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)求的前項(xiàng)和及使得最小的的值.18.(12分)《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績(jī)由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績(jī)從高到低劃分為、、、、、、、共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為、、、、、、、.選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將至等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到、、、、、、、八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績(jī)基本服從正態(tài)分布.(1)求物理原始成績(jī)?cè)趨^(qū)間的人數(shù);(2)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間的人數(shù),求的分布列和數(shù)學(xué)期望.(附:若隨機(jī)變量,則,,)19.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.20.(12分)已知函數(shù)(,)滿足下列3個(gè)條件中的2個(gè)條件:①函數(shù)的周期為;②是函數(shù)的對(duì)稱軸;③且在區(qū)間上單調(diào).(Ⅰ)請(qǐng)指出這二個(gè)條件,并求出函數(shù)的解析式;(Ⅱ)若,求函數(shù)的值域.21.(12分)下表是某公司2018年5~12月份研發(fā)費(fèi)用(百萬元)和產(chǎn)品銷量(萬臺(tái))的具體數(shù)據(jù):月份56789101112研發(fā)費(fèi)用(百萬元)2361021131518產(chǎn)品銷量(萬臺(tái))1122.563.53.54.5(Ⅰ)根據(jù)數(shù)據(jù)可知與之間存在線性相關(guān)關(guān)系,求出與的線性回歸方程(系數(shù)精確到0.01);(Ⅱ)該公司制定了如下獎(jiǎng)勵(lì)制度:以(單位:萬臺(tái))表示日銷售,當(dāng)時(shí),不設(shè)獎(jiǎng);當(dāng)時(shí),每位員工每日獎(jiǎng)勵(lì)200元;當(dāng)時(shí),每位員工每日獎(jiǎng)勵(lì)300元;當(dāng)時(shí),每位員工每日獎(jiǎng)勵(lì)400元.現(xiàn)已知該公司某月份日銷售(萬臺(tái))服從正態(tài)分布(其中是2018年5-12月產(chǎn)品銷售平均數(shù)的二十分之一),請(qǐng)你估計(jì)每位員工該月(按30天計(jì)算)獲得獎(jiǎng)勵(lì)金額總數(shù)大約多少元.參考數(shù)據(jù):,,,,參考公式:相關(guān)系數(shù),其回歸直線中的,若隨機(jī)變量服從正態(tài)分布,則,.22.(10分)設(shè)的內(nèi)角的對(duì)邊分別為,已知.(1)求;(2)若為銳角三角形,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點(diǎn)睛】本題考查了向量的多邊形法則、數(shù)量積的運(yùn)算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計(jì)算能力,屬于中檔題.2.D【解析】
首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點(diǎn)與圓心距離,數(shù)形結(jié)合即可得到答案.【詳解】作出可行域如圖所示設(shè)圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點(diǎn)睛】本題考查與線性規(guī)劃相關(guān)的取值范圍問題,涉及到向量的線性運(yùn)算、數(shù)量積、點(diǎn)到直線的距離等知識(shí),考查學(xué)生轉(zhuǎn)化與劃歸的思想,是一道中檔題.3.B【解析】
根據(jù)程序框圖知當(dāng)時(shí),循環(huán)終止,此時(shí),即可得答案.【詳解】,.運(yùn)行第一次,,不成立,運(yùn)行第二次,,不成立,運(yùn)行第三次,,不成立,運(yùn)行第四次,,不成立,運(yùn)行第五次,,成立,輸出i的值為11,結(jié)束.故選:B.【點(diǎn)睛】本題考查補(bǔ)充程序框圖判斷框的條件,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意模擬程序一步一步執(zhí)行的求解策略.4.D【解析】
易知單調(diào)遞增,由可得唯一零點(diǎn),通過已知可求得,則問題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡(jiǎn)可得,借助對(duì)號(hào)函數(shù)即可解得實(shí)數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點(diǎn)為,所以,∴,問題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對(duì)勾函數(shù)”可知函數(shù)在區(qū)間的值域?yàn)椋?故選D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問題,考查了方程有解問題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對(duì)勾函數(shù)”求參數(shù)取值范圍問題,難度較難.5.B【解析】
先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡(jiǎn)不等式,解得結(jié)果.【詳解】令,則當(dāng)時(shí),,又,所以為偶函數(shù),從而等價(jià)于,因此選B.【點(diǎn)睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.6.B【解析】由三視圖知:幾何體是直三棱柱消去一個(gè)三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點(diǎn)睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問題的關(guān)鍵;幾何體是直三棱柱消去一個(gè)三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.7.A【解析】
解出集合,利用交集的定義可求得集合.【詳解】因?yàn)椋郑?故選:A.【點(diǎn)睛】本題考查交集的計(jì)算,同時(shí)也考查了一元二次不等式的求解,考查計(jì)算能力,屬于基礎(chǔ)題.8.A【解析】
求出集合,然后進(jìn)行并集的運(yùn)算即可.【詳解】∵,,∴.故選:A.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運(yùn)算,屬于基礎(chǔ)題.9.A【解析】
對(duì)于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以①正確.對(duì)于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯(cuò)誤.對(duì)于③,因?yàn)椋裕寓坼e(cuò)誤.對(duì)于④,因?yàn)椋裕寓苷_.故選A.10.B【解析】
根據(jù)條件可知方程有且只有一個(gè)實(shí)根等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象,數(shù)形結(jié)合即可.【詳解】解:因?yàn)闂l件等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象如圖,由圖可知,,故選:B.【點(diǎn)睛】本題主要考查函數(shù)圖象與方程零點(diǎn)之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.11.B【解析】
設(shè)大正方體的邊長為,從而求得小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,利用概率模擬列方程即可求解。【詳解】設(shè)大正方體的邊長為,則小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,則,解得:故選:B【點(diǎn)睛】本題主要考查了概率模擬的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題。12.C【解析】
先確定集合中元素,可得非空子集個(gè)數(shù).【詳解】由題意,共3個(gè)元素,其子集個(gè)數(shù)為,非空子集有7個(gè).故選:C.【點(diǎn)睛】本題考查集合的概念,考查子集的概念,含有個(gè)元素的集合其子集個(gè)數(shù)為,非空子集有個(gè).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
結(jié)合圖形及向量的線性運(yùn)算將轉(zhuǎn)化為用向量表示,即可得到結(jié)果.【詳解】在中,因?yàn)椋裕忠驗(yàn)椋裕蚀鸢笧椋骸军c(diǎn)睛】本題主要考查三角形中向量的線性運(yùn)算,關(guān)鍵是利用已知向量為基底,將未知向量通過幾何條件向基底轉(zhuǎn)化.14.【解析】解:由題意可知:.15.【解析】
求導(dǎo),研究函數(shù)單調(diào)性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)最值的求解中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題16.1【解析】
由求出,代入,進(jìn)行數(shù)量積的運(yùn)算即得.【詳解】,存在實(shí)數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.【點(diǎn)睛】本題考查向量共線定理和平面向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2);時(shí),取得最小值【解析】
(1)設(shè)等差數(shù)列的公差為,由,結(jié)合已知,聯(lián)立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設(shè)等差數(shù)列的公差為,由及,得解得數(shù)列的通項(xiàng)公式為(2)由(1)知時(shí),取得最小值.【點(diǎn)睛】本題解題關(guān)鍵是掌握等差數(shù)列通項(xiàng)公式和前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.18.(Ⅰ)1636人;(Ⅱ)見解析.【解析】
(Ⅰ)根據(jù)正態(tài)曲線的對(duì)稱性,可將區(qū)間分為和兩種情況,然后根據(jù)特殊區(qū)間上的概率求出成績(jī)?cè)趨^(qū)間內(nèi)的概率,進(jìn)而可求出相應(yīng)的人數(shù);(Ⅱ)由題意得成績(jī)?cè)趨^(qū)間[61,80]的概率為,且,由此可得的分布列和數(shù)學(xué)期望.【詳解】(Ⅰ)因?yàn)槲锢碓汲煽?jī),所以.所以物理原始成績(jī)?cè)冢?7,86)的人數(shù)為(人).(Ⅱ)由題意得,隨機(jī)抽取1人,其成績(jī)?cè)趨^(qū)間[61,80]內(nèi)的概率為.所以隨機(jī)抽取三人,則的所有可能取值為0,1,2,3,且,所以,,,.所以的分布列為0123所以數(shù)學(xué)期望.【點(diǎn)睛】(1)解答第一問的關(guān)鍵是利用正態(tài)分布的三個(gè)特殊區(qū)間表示所求概率的區(qū)間,再根據(jù)特殊區(qū)間上的概率求解,解題時(shí)注意結(jié)合正態(tài)曲線的對(duì)稱性.(2)解答第二問的關(guān)鍵是判斷出隨機(jī)變量服從二項(xiàng)分布,然后可得分布列及其數(shù)學(xué)期望.當(dāng)被抽取的總體的容量較大時(shí),抽樣可認(rèn)為是等可能的,進(jìn)而可得隨機(jī)變量服從二項(xiàng)分布.19.(1)(2)的遞減區(qū)間為和【解析】
(1)化簡(jiǎn)函數(shù),代入,計(jì)算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點(diǎn)睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.20.(Ⅰ)只有①②成立,;(Ⅱ).【解析】
(Ⅰ)依次討論①②成立,①③成立,②③成立,計(jì)算得到只有①②成立,得到答案.(Ⅱ)得到,得到函數(shù)值域.【詳解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,則,,,若①③成立,則,,不合題意,若②③成立,則,,與③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由題意得,,所以函數(shù)的值域?yàn)?【點(diǎn)睛】本題考查了三角函數(shù)的周期,對(duì)稱軸,單調(diào)性,值域,表達(dá)式,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.21.(Ⅰ)(Ⅱ)7839.3元【解析】
(Ⅰ)由題意計(jì)算x、y的平均值,進(jìn)而由公式求出回歸系數(shù)b和a,即可寫出回歸直線方程;(Ⅱ)由題意計(jì)算平均數(shù)μ,得出z~N(μ,),求出日銷量z∈[0.13,0.15)、[0.15,0.16)和[0.16,+∞)的概率,計(jì)算獎(jiǎng)金總數(shù)是多少.【詳解】(Ⅰ)因?yàn)椋驗(yàn)椋裕裕唬á颍┮驗(yàn)椋裕?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 成功經(jīng)驗(yàn)分享2024年體育經(jīng)紀(jì)人試題及答案
- 農(nóng)作物安全保護(hù)的試題及答案指南
- 2024年種子繁育員考試真題試題及答案
- 提升農(nóng)作物種子產(chǎn)業(yè)的發(fā)展能力試題及答案
- 2024年體育經(jīng)紀(jì)人資格考試的成功秘笈試題及答案
- 如何在農(nóng)作物繁育中應(yīng)用新技術(shù)試題及答案
- 2024年游泳救生員心理素質(zhì)試題
- 2024年體育經(jīng)紀(jì)人資格考試動(dòng)態(tài)
- 強(qiáng)化生產(chǎn)計(jì)劃執(zhí)行的技術(shù)手段
- 生產(chǎn)計(jì)劃中的消耗品管理
- 2022Z世代洞察報(bào)告QuestMobile
- 中國制造業(yè)數(shù)字化轉(zhuǎn)型研究報(bào)告
- 申請(qǐng)法院調(diào)查取證申請(qǐng)書(調(diào)取銀行資金流水)
- 辦公室事故防范(典型案例分析)
- 三治融合課件講解
- 第二部分-CPO-10中央機(jī)房?jī)?yōu)化控制系統(tǒng)
- 設(shè)計(jì)概論重點(diǎn)知識(shí)
- 留仙洞總部基地城市設(shè)計(jì)
- 2020新版?zhèn)€人征信報(bào)告模板
- 白血病鑒別診斷
- 貨車轉(zhuǎn)向橋設(shè)計(jì)終
評(píng)論
0/150
提交評(píng)論