




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省滄州市普通高中2025年高三下學期周末練習3數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面向量,,,則實數x的值等于()A.6 B.1 C. D.2.已知與函數和都相切,則不等式組所確定的平面區域在內的面積為()A. B. C. D.3.設命題:,,則為A., B.,C., D.,4.已知我市某居民小區戶主人數和戶主對戶型結構的滿意率分別如圖和如圖所示,為了解該小區戶主對戶型結構的滿意程度,用分層抽樣的方法抽取的戶主進行調查,則樣本容量和抽取的戶主對四居室滿意的人數分別為A.240,18 B.200,20C.240,20 D.200,185.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,它的終邊過點,則的值為()A. B. C. D.6.如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.7.已知集合,則()A. B.C. D.8.我國古代數學著作《九章算術》有如下問題:“今有蒲生一日,長三尺莞生一日,長一尺蒲生日自半,莞生日自倍.問幾何日而長倍?”意思是:“今有蒲草第天長高尺,蕪草第天長高尺以后,蒲草每天長高前一天的一半,蕪草每天長高前一天的倍.問第幾天莞草是蒲草的二倍?”你認為莞草是蒲草的二倍長所需要的天數是()(結果采取“只入不舍”的原則取整數,相關數據:,)A. B. C. D.9.拋擲一枚質地均勻的硬幣,每次正反面出現的概率相同,連續拋擲5次,至少連續出現3次正面朝上的概率是()A. B. C. D.10.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發,需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.11.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內角是第一象限角或第二象限角;③若命題,,則命題,;④設集合,,則“”是“”的必要條件;其中正確命題的個數是()A. B. C. D.12.方程在區間內的所有解之和等于()A.4 B.6 C.8 D.10二、填空題:本題共4小題,每小題5分,共20分。13.已知中,點是邊的中點,的面積為,則線段的取值范圍是__________.14.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎.在比賽結果揭曉之前,四人的猜測如下表,其中“√”表示猜測某人獲獎,“×”表示猜測某人未獲獎,而“○”則表示對某人是否獲獎未發表意見.已知四個人中有且只有兩個人的猜測是正確的,那么兩名獲獎者是_______.甲獲獎乙獲獎丙獲獎丁獲獎甲的猜測√××√乙的猜測×○○√丙的猜測×√×√丁的猜測○○√×15.某陶瓷廠準備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經過兩次燒制,當第一次燒制合格后方可進入第二次燒制,再次燒制過程相互獨立.根據該廠現有的技術水平,經過第一次燒制后,甲、乙、丙三件產品合格的概率依次為0.5、0.6、0.4,經過第二次燒制后,甲、乙、丙三件產品合格的概率依次為0.6、0.5、0.75;則第一次燒制后恰有一件產品合格的概率為________;經過前后兩次燒制后,合格工藝品的件數為,則隨機變量的期望為________.16.“北斗三號”衛星的運行軌道是以地心為一個焦點的橢圓.設地球半徑為R,若其近地點?遠地點離地面的距離大約分別是,,則“北斗三號”衛星運行軌道的離心率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)求函數在處的切線方程;(2)當時,證明:對任意恒成立.18.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.19.(12分)三棱柱中,平面平面,,點為棱的中點,點為線段上的動點.(1)求證:;(2)若直線與平面所成角為,求二面角的正切值.20.(12分)隨著小汽車的普及,“駕駛證”已經成為現代人“必考”的證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個科目的考試,其中科目二為場地考試.在一次報名中,每個學員有5次參加科目二考試的機會(這5次考試機會中任何一次通過考試,就算順利通過,即進入下一科目考試;若5次都沒有通過,則需重新報名),其中前2次參加科目二考試免費,若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補考費.某駕校對以往2000個學員第1次參加科目二考試進行了統計,得到下表:考試情況男學員女學員第1次考科目二人數1200800第1次通過科目二人數960600第1次未通過科目二人數240200若以上表得到的男、女學員第1次通過科目二考試的頻率分別作為此駕校男、女學員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨立.現有一對夫妻同時在此駕校報名參加了駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機會為止.(1)求這對夫妻在本次報名中參加科目二考試都不需要交補考費的概率;(2)若這對夫妻前2次參加科目二考試均沒有通過,記這對夫妻在本次報名中參加科目二考試產生的補考費用之和為元,求的分布列與數學期望.21.(12分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.22.(10分)如圖,在四棱錐中,底面為直角梯形,,,,,,點、分別為,的中點,且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據向量平行的坐標表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標運算,屬于容易題.2、B【解析】
根據直線與和都相切,求得的值,由此畫出不等式組所表示的平面區域以及圓,由此求得正確選項.【詳解】.設直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數得,化簡得③.構造函數,,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應的區域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區域在內的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點睛】本小題主要考查根據公共切線求參數,考查不等式組表示區域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數形結合的數學思想方法,考查分析思考與解決問題的能力,屬于難題.3、D【解析】
直接利用全稱命題的否定是特稱命題寫出結果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關系,是基礎題.4、A【解析】
利用統計圖結合分層抽樣性質能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數.【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數為:故選A.【點睛】本題考查樣本容量和抽取的戶主對四居室滿意的人數的求法,是基礎題,解題時要認真審題,注意統計圖的性質的合理運用.5、B【解析】
根據三角函數定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過點,∴,.∴.故選:.【點睛】本題考查了三角函數定義,和差公式,意在考查學生的計算能力.6、D【解析】
根據三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎題.7、B【解析】
先由得或,再計算即可.【詳解】由得或,,,又,.故選:B【點睛】本題主要考查了集合的交集,補集的運算,考查學生的運算求解能力.8、C【解析】
由題意可利用等比數列的求和公式得莞草與蒲草n天后長度,進而可得:,解出即可得出.【詳解】由題意可得莞草與蒲草第n天的長度分別為據題意得:,解得2n=12,∴n21.故選:C.【點睛】本題考查了等比數列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.9、A【解析】
首先求出樣本空間樣本點為個,再利用分類計數原理求出三個正面向上為連續的3個“1”的樣本點個數,再求出重復數量,可得事件的樣本點數,根據古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復,重復數量為,事件的樣本點數為:個.故不同的樣本點數為8個,.故選:A【點睛】本題考查了分類計數原理與分步計數原理,古典概型的概率計算公式,屬于基礎題10、C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內容,考查了學生的空間想象能力,屬于中檔題.11、B【解析】
①利用真假表來判斷,②考慮內角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當內角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎題.12、C【解析】
畫出函數和的圖像,和均關于點中心對稱,計算得到答案.【詳解】,驗證知不成立,故,畫出函數和的圖像,易知:和均關于點中心對稱,圖像共有8個交點,故所有解之和等于.故選:.【點睛】本題考查了方程解的問題,意在考查學生的計算能力和應用能力,確定函數關于點中心對稱是解題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設,利用正弦定理,根據,得到①,再利用余弦定理得②,①②平方相加得:,轉化為有解問題求解.【詳解】設,所以,即①由余弦定理得,即②,①②平方相加得:,即,令,設,在上有解,所以,解得,即,故答案為:【點睛】本題主要考查正弦定理和余弦定理在平面幾何中的應用,還考查了運算求解的能力,屬于難題.14、乙、丁【解析】
本題首先可根據題意中的“四個人中有且只有兩個人的猜測是正確的”將題目分為四種情況,然后對四種情況依次進行分析,觀察四人所猜測的結果是否沖突,最后即可得出結果.【詳解】從表中可知,若甲猜測正確,則乙,丙,丁猜測錯誤,與題意不符,故甲猜測錯誤;若乙猜測正確,則依題意丙猜測無法確定正誤,丁猜測錯誤;若丙猜測正確,則丁猜測錯誤;綜上只有乙,丙猜測不矛盾,依題意乙,丙猜測是正確的,從而得出乙,丁獲獎.所以本題答案為乙、丁.【點睛】本題是一個簡單的合情推理題,能否根據“四個人中有且只有兩個人的猜測是正確的”將題目所給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關鍵,考查推理能力,是簡單題.15、0.380.9【解析】
考慮恰有一件的三種情況直接計算得到概率,隨機變量的可能取值為,計算得到概率,再計算數學期望得到答案.【詳解】第一次燒制后恰有一件產品合格的概率為:.甲、乙、丙三件產品合格的概率分別為:,,.故隨機變量的可能取值為,故;;;.故.故答案為:0.38;0.9.【點睛】本題考查了概率的計算,數學期望,意在考查學生的計算能力和應用能力.16、【解析】
畫出圖形,結合橢圓的定義和題設條件,求得的值,即可求得橢圓的離心率,得到答案.【詳解】如圖所示,設橢圓的長半軸為,半焦距為,因為地球半徑為R,若其近地點?遠地點離地面的距離大約分別是,,可得,解得,所以橢圓的離心率為.故答案為:.【點睛】本題主要考查了橢圓的離心率的求解,其中解答中熟記橢圓的幾何性質,列出方程組,求得的值是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)因為,可得,即可求得答案;(2)要證對任意恒成立,即證對任意恒成立.設,,當時,,即可求得答案.【詳解】(1),,,函數在處的切線方程為.(2)要證對任意恒成立.即證對任意恒成立.設,,當時,,,令,解得,當時,,函數在上單調遞減;當時,,函數在上單調遞增.,,,當時,對任意恒成立,即當時,對任意恒成立.【點睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問題,解題關鍵是掌握由導數求切線方程的解法和根據導數求證不等式恒成立的方法,考查了分析能力和計算能力,屬于難題.18、(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點M,連接ME,則.因為平面,平面,所以平面.(Ⅱ)因為平面ABC,所以點到平面ABC的距離等于點到平面ABC的距離.如圖,設O是AC的中點,連接,OB.因為為正三角形,所以,又平面平面,平面平面,所以平面ABC.所以點到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點睛】本題考查證明線面平行,計算體積,意在考查推理證明,空間想象能力,計算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關鍵是證明線線平行,一般構造平行四邊形,則對邊平行,或是構造三角形中位線.19、(1)見解析;(2)【解析】
(1)可證面,從而可得.(2)可證點為線段的三等分點,再過作于,過作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標系,利用兩個平面的法向量來計算二面角的平面角的余弦值,最后利用同角三角函數的基本關系式可求.【詳解】證明:(1)因為為中點,所以.因為平面平面,平面平面,平面,所以平面,而平面,故,又因為,所以,則,又,故面,又面,所以.(2)由(1)可得:面在面內的射影為,則為直線與平面所成的角,即.因為,所以,所以,所以,即點為線段的三等分點.解法一:過作于,則平面,所以,過作,垂足為,則為二面角的平面角,因為,,,則在中,有,所以二面角的平面角的正切值為.解法二:以點為原點,建立如圖所示的空間直角坐標系,則,設點,由得:,即,,,點,平面的一個法向量,又,,設平面的一個法向量為,則,令,則平面的一個法向量為.設二面角的平面角為,則,即,所以二面角的正切值為.【點睛】線線垂直的判定可由線面垂直得到,也可以由兩條線所成的角為得到,而線面垂直又可以由面面垂直得到,解題中注意三種垂直關系的轉化.空間中的角的計算,可以建立空間直角坐標系把角的計算歸結為向量的夾角的計算,也可以構建空間角,把角的計算歸結平面圖形中的角的計算.20、(1);(2)見解析.【解析】
事件表示男學員在第次考科目二通過,事件表示女學員在第次考科目二通過(其中)(1)這對夫妻是否通過科目二考試相互獨立,利用獨立事件乘法公式即可求得;(2)補考費用之和為元可能取值為400,600,800,1000,1200,根據題意可求相應的概率,進而可求X的數學期望.【詳解】事件表示男學員在第次考科目二通過,事件表示女學員在第次考科目二通過(其中).(1)事件表示這對夫妻考科目二都不需要交補考費..(2)的可能取值為400,600,800,1000,1200.,,,,.則的分布列為:40060080010001200
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理安全培訓 2
- 2-7邏輯運算的基本規則
- 統編版語文五年級下冊第23課《童年的發現》精美課件
- 新鄉學院《傅里葉分析與小波分析》2023-2024學年第一學期期末試卷
- 聊城大學東昌學院《混凝土結構原理與設計》2023-2024學年第一學期期末試卷
- 樂山師范學院《信息檢索與科技寫作》2023-2024學年第二學期期末試卷
- 四川省江油市2024-2025學年第二學期初三第一次模擬考試化學試題含解析
- 天津市職業大學《隸書技法》2023-2024學年第二學期期末試卷
- 濰坊科技學院《建筑安裝工程概預算》2023-2024學年第一學期期末試卷
- 上海市寶山區上海交大附中2025屆高三下5月第一次質量檢測試題物理試題試卷含解析
- 畢業設計(論文)-可調節辦公椅分析與設計
- 工業廢氣治理工(技師)職業技能鑒定理論試題及答案
- 騰訊游戲引擎技術向工業數字孿生的遷移
- 肩關節鏡相關知識
- “趣”破“蛐蛐”小妙招社交魔法課主題班會
- 中國肥胖及代謝疾病外科治療指南(2024版)解讀
- 醫院建設項目驗收管理流程
- 工業能源管理的數字化轉型
- 設計院保密管理制度(3篇)
- 2-2生態脆弱區的綜合治理(分層練習)解析版
- 《投資理財課件》課件
評論
0/150
提交評論