2025屆湖北省黃岡市高中畢業班模擬考試(一)數學試題_第1頁
2025屆湖北省黃岡市高中畢業班模擬考試(一)數學試題_第2頁
2025屆湖北省黃岡市高中畢業班模擬考試(一)數學試題_第3頁
2025屆湖北省黃岡市高中畢業班模擬考試(一)數學試題_第4頁
2025屆湖北省黃岡市高中畢業班模擬考試(一)數學試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖北省黃岡市高中畢業班模擬考試(一)數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是偶函數,當時,函數單調遞減,設,,,則的大小關系為()A. B. C. D.2.已知為等腰直角三角形,,,為所在平面內一點,且,則()A. B. C. D.3.已知向量,夾角為,,,則()A.2 B.4 C. D.4.已知,則不等式的解集是()A. B. C. D.5.已知函數,若不等式對任意的恒成立,則實數k的取值范圍是()A. B. C. D.6.已知為等比數列,,,則()A.9 B.-9 C. D.7.已知等差數列中,,則()A.20 B.18 C.16 D.148.集合的真子集的個數是()A. B. C. D.9.已知盒中有3個紅球,3個黃球,3個白球,且每種顏色的三個球均按,,編號,現從中摸出3個球(除顏色與編號外球沒有區別),則恰好不同時包含字母,,的概率為()A. B. C. D.10.已知雙曲線,為坐標原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.11.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.12.函數的對稱軸不可能為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設是等比數列的前項的和,成等差數列,則的值為_____.14.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.15.下表是關于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調查數據,人數如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現要在所有參與調查的人中用分層抽樣的方法抽取個人做進一步的調研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.16.如圖所示的流程圖中,輸出的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數的最大值為2.(Ⅰ)求函數在上的單調遞減區間;(Ⅱ)中,,角所對的邊分別是,且,求的面積.18.(12分)在中,角的對邊分別為,且滿足.(Ⅰ)求角的大小;(Ⅱ)若的面積為,,求和的值.19.(12分)如圖,四棱錐中,底面是邊長為的菱形,,點分別是的中點.(1)求證:平面;(2)若,求直線與平面所成角的正弦值.20.(12分)設函數,(1)當,,求不等式的解集;(2)已知,,的最小值為1,求證:.21.(12分)我們稱n()元有序實數組(,,…,)為n維向量,為該向量的范數.已知n維向量,其中,,2,…,n.記范數為奇數的n維向量的個數為,這個向量的范數之和為.(1)求和的值;(2)當n為偶數時,求,(用n表示).22.(10分)在直角坐標系中,直線的參數方程是為參數),曲線的參數方程是為參數),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據圖象關于軸對稱可知關于對稱,從而得到在上單調遞增且;再根據自變量的大小關系得到函數值的大小關系.【詳解】為偶函數圖象關于軸對稱圖象關于對稱時,單調遞減時,單調遞增又且,即本題正確選項:【點睛】本題考查利用函數奇偶性、對稱性和單調性比較函數值的大小關系問題,關鍵是能夠通過奇偶性和對稱性得到函數的單調性,通過自變量的大小關系求得結果.2、D【解析】

以AB,AC分別為x軸和y軸建立坐標系,結合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數量積的運算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.3、A【解析】

根據模長計算公式和數量積運算,即可容易求得結果.【詳解】由于,故選:A.【點睛】本題考查向量的數量積運算,模長的求解,屬綜合基礎題.4、A【解析】

構造函數,通過分析的單調性和對稱性,求得不等式的解集.【詳解】構造函數,是單調遞增函數,且向左移動一個單位得到,的定義域為,且,所以為奇函數,圖像關于原點對稱,所以圖像關于對稱.不等式等價于,等價于,注意到,結合圖像關于對稱和單調遞增可知.所以不等式的解集是.故選:A【點睛】本小題主要考查根據函數的單調性和對稱性解不等式,屬于中檔題.5、A【解析】

先求出函數在處的切線方程,在同一直角坐標系內畫出函數和的圖象,利用數形結合進行求解即可.【詳解】當時,,所以函數在處的切線方程為:,令,它與橫軸的交點坐標為.在同一直角坐標系內畫出函數和的圖象如下圖的所示:利用數形結合思想可知:不等式對任意的恒成立,則實數k的取值范圍是.故選:A【點睛】本題考查了利用數形結合思想解決不等式恒成立問題,考查了導數的應用,屬于中檔題.6、C【解析】

根據等比數列的下標和性質可求出,便可得出等比數列的公比,再根據等比數列的性質即可求出.【詳解】∵,∴,又,可解得或設等比數列的公比為,則當時,,∴;當時,,∴.故選:C.【點睛】本題主要考查等比數列的性質應用,意在考查學生的數學運算能力,屬于基礎題.7、A【解析】

設等差數列的公差為,再利用基本量法與題中給的條件列式求解首項與公差,進而求得即可.【詳解】設等差數列的公差為.由得,解得.所以.故選:A【點睛】本題主要考查了等差數列的基本量求解,屬于基礎題.8、C【解析】

根據含有個元素的集合,有個子集,有個真子集,計算可得;【詳解】解:集合含有個元素,則集合的真子集有(個),故選:C【點睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎題.9、B【解析】

首先求出基本事件總數,則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”,記事件“恰好不同時包含字母,,”為,利用對立事件的概率公式計算可得;【詳解】解:從9個球中摸出3個球,則基本事件總數為(個),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”記事件“恰好不同時包含字母,,”為,則.故選:B【點睛】本題考查了古典概型及其概率計算公式,考查了排列組合的知識,解答的關鍵在于正確理解題意,屬于基礎題.10、D【解析】

根據,先確定出的長度,然后利用雙曲線定義將轉化為的關系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點睛】本題考查根據雙曲線中的長度關系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.11、C【解析】

根據三視圖作出幾何體的直觀圖,結合三視圖的數據可求得幾何體的體積.【詳解】根據三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎題.12、D【解析】

由條件利用余弦函數的圖象的對稱性,得出結論.【詳解】對于函數,令,解得,當時,函數的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數的圖象的對稱性,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

設等比數列的公比設為再根據成等差數列利用基本量法求解再根據等比數列各項間的關系求解即可.【詳解】解:等比數列的公比設為成等差數列,可得若則顯然不成立,故則,化為解得,則故答案為:.【點睛】本題主要考查了等比數列的基本量求解以及運用,屬于中檔題.14、【解析】

甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.【點睛】本題考查古典概型的概率的計算,考查學生分析問題的能力,難度容易.15、32【解析】

由已知可得抽取的比例,計算出所有被調查的人數,再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調查的總人數為人,則分層抽樣的樣本容量是人.故答案為:32【點睛】本題考查分層抽樣中求樣本容量,屬于基礎題.16、4【解析】

根據流程圖依次運行直到,結束循環,輸出n,得出結果.【詳解】由題:,,,結束循環,輸出.故答案為:4【點睛】此題考查根據程序框圖運行結果求輸出值,關鍵在于準確識別循環結構和判斷框語句.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】

(1)由題意,f(x)的最大值為所以而m>0,于是m=,f(x)=2sin(x+).由正弦函數的單調性可得x滿足即所以f(x)在[0,π]上的單調遞減區間為(2)設△ABC的外接圓半徑為R,由題意,得化簡得sinA+sinB=2sinAsinB.由正弦定理,得①由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0②將①式代入②,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故18、(Ⅰ);(Ⅱ),.【解析】

(Ⅰ)運用正弦定理和二角和的正弦公式,化簡,即可求出角的大小;(Ⅱ)通過面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據同角的三角函數關系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【點睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公式以及同角的三角函數關系,考查了運算能力.19、(1)見解析;(2).【解析】

(1)取的中點,連接,通過證明,即可證得;(2)建立空間直角坐標系,利用向量的坐標表示即可得解.【詳解】(1)證明:取的中點,連接.是的中點,,又,四邊形是平行四邊形.,又平面平面,平面.(2),,同理可得:,又平面.連接,設,則,建立空間直角坐標系.設平面的法向量為,則,則,?。本€與平面所成角的正弦值為.【點睛】此題考查證明線面平行,求線面角的大小,關鍵在于熟練掌握線面平行的證明方法,法向量法求線面角的基本方法,根據公式準確計算.20、(1)或;(2)證明見解析【解析】

(1)將化簡,分類討論即可;(2)由(1)得,,展開后再利用基本不等式即可.【詳解】(1)當時,,所以或或解得或,因此不等式的解集的或(2)根據,當且僅當時,等式成立.【點睛】本題考查絕對值不等式的解法、利用基本不等式證明不等式問題,考查學生基本的計算能力,是一道基礎題.21、(1),.(2),【解析】

(1)利用枚舉法將范數為奇數的二元有序實數對都寫出來,再做和;(2)用組合數表示和,再由公式或將組合數進行化簡,得出最終結果.【詳解】解:(1)范數為奇數的二元有序實數對有:,,,,它們的范數依次為1,1,1,1,故,.(2)當n為偶數時,在向量的n個坐標中,要使得范數為奇數,則0的個數一定是奇數,所以可按照含0個數為:1,3,…,進行討論:的n個坐標中含1個0,其余坐標為1或,共有個,每個的范數為;的n個坐標中含3個0,其余坐標為1或,共有個,每個的范數為;的n個坐標中含個0,其余坐標為1或,共有個,每個的范數為1;所以,.因為,①,②得,,所以.解法1:因為,所以..解法2:得,.又因為,所以.【點睛】本題考查了數列和組合,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論