2025屆安徽省濉溪縣高三下學期網絡教學訓練題(二)數學試題_第1頁
2025屆安徽省濉溪縣高三下學期網絡教學訓練題(二)數學試題_第2頁
2025屆安徽省濉溪縣高三下學期網絡教學訓練題(二)數學試題_第3頁
2025屆安徽省濉溪縣高三下學期網絡教學訓練題(二)數學試題_第4頁
2025屆安徽省濉溪縣高三下學期網絡教學訓練題(二)數學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省濉溪縣高三下學期網絡教學訓練題(二)數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與圓的位置關系是()A.相交 B.相切 C.相離 D.相交或相切2.已知,且,則的值為()A. B. C. D.3.設,則關于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線4.已知,,,則的大小關系為()A. B. C. D.5.已知銳角滿足則()A. B. C. D.6.記為數列的前項和數列對任意的滿足.若,則當取最小值時,等于()A.6 B.7 C.8 D.97.執行下面的程序框圖,如果輸入,,則計算機輸出的數是()A. B. C. D.8.以,為直徑的圓的方程是A. B.C. D.9.已知集合A,B=,則A∩B=A. B. C. D.10.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.造紙術、印刷術、指南針、火藥被稱為中國古代四大發明,此說法最早由英國漢學家艾約瑟提出并為后來許多中國的歷史學家所繼承,普遍認為這四種發明對中國古代的政治,經濟,文化的發展產生了巨大的推動作用.某小學三年級共有學生500名,隨機抽查100名學生并提問中國古代四大發明,能說出兩種發明的有45人,能說出3種及其以上發明的有32人,據此估計該校三級的500名學生中,對四大發明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人12.已知角的終邊經過點,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實數x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標函數14.已知,分別是橢圓:()的左、右焦點,過左焦點的直線與橢圓交于、兩點,且,,則橢圓的離心率為__________.15.記復數z=a+bi(i為虛數單位)的共軛復數為,已知z=2+i,則_____.16.關于函數有下列四個命題:①函數在上是增函數;②函數的圖象關于中心對稱;③不存在斜率小于且與函數的圖象相切的直線;④函數的導函數不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,平面,底面ABCD滿足AD∥BC,,,E為AD的中點,AC與BE的交點為O.(1)設H是線段BE上的動點,證明:三棱錐的體積是定值;(2)求四棱錐的體積;(3)求直線BC與平面PBD所成角的余弦值.18.(12分)在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.已知直線的參數方程為(為參數),曲線的極坐標方程為;(1)求直線的直角坐標方程和曲線的直角坐標方程;(2)若直線與曲線交點分別為,,點,求的值.19.(12分)近年空氣質量逐步惡化,霧霾天氣現象出現增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關,在某醫院隨機的對入院人進行了問卷調查得到了如下的列聯表:患心肺疾病不患心肺疾病合計男女合計已知在全部人中隨機抽取人,抽到患心肺疾病的人的概率為.(1)請將上面的列聯表補充完整,并判斷是否有的把握認為患心肺疾病與性別有關?請說明你的理由;(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業的工作.為了指導市民盡可能地減少因霧霾天氣對身體的傷害,現從不患心肺疾病的位男性中,選出人進行問卷調查,求所選的人中至少有一位從事的是戶外作業的概率.下面的臨界值表供參考:(參考公式,其中)20.(12分)在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數方程為x=-2+22t,y=-1+(I)寫出曲線C的直角坐標方程和直線l的普通方程(不要求具體過程);(II)設P(-2,-1),若|PM|,|MN|,|PN|成等比數列,求a的值.21.(12分)如圖所示,直角梯形ABCD中,,,,四邊形EDCF為矩形,,平面平面ABCD.(1)求證:平面ABE;(2)求平面ABE與平面EFB所成銳二面角的余弦值.(3)在線段DF上是否存在點P,使得直線BP與平面ABE所成角的正弦值為,若存在,求出線段BP的長,若不存在,請說明理由.22.(10分)已知是拋物線:的焦點,點在上,到軸的距離比小1.(1)求的方程;(2)設直線與交于另一點,為的中點,點在軸上,.若,求直線的斜率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點睛】本題主要考查直線與圓的位置關系,屬于基礎題.2、A【解析】

由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.【點睛】本題考查三角函數誘導公式、二倍角公式以及兩角差的正切公式的應用,考查學生的基本計算能力,是一道基礎題.3、C【解析】

根據條件,方程.即,結合雙曲線的標準方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,

方程,即,表示實軸在y軸上的雙曲線,

故選C.【點睛】本題考查雙曲線的標準方程的特征,依據條件把已知的曲線方程化為是關鍵.4、A【解析】

根據指數函數與對數函數的單調性,借助特殊值即可比較大小.【詳解】因為,所以.因為,所以,因為,為增函數,所以所以,故選:A.【點睛】本題主要考查了指數函數、對數函數的單調性,利用單調性比較大小,屬于中檔題.5、C【解析】

利用代入計算即可.【詳解】由已知,,因為銳角,所以,,即.故選:C.【點睛】本題考查二倍角的正弦、余弦公式的應用,考查學生的運算能力,是一道基礎題.6、A【解析】

先令,找出的關系,再令,得到的關系,從而可求出,然后令,可得,得出數列為等差數列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當時,取最小值.故選:A【點睛】此題考查的是由數列的遞推式求數列的通項,采用了賦值法,屬于中檔題.7、B【解析】

先明確該程序框圖的功能是計算兩個數的最大公約數,再利用輾轉相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數,所以,,,故當輸入,,則計算機輸出的數是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.8、A【解析】

設圓的標準方程,利用待定系數法一一求出,從而求出圓的方程.【詳解】設圓的標準方程為,由題意得圓心為,的中點,根據中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數法求圓的方程,解題的關鍵是假設圓的標準方程,建立方程組,屬于基礎題.9、A【解析】

先解A、B集合,再取交集。【詳解】,所以B集合與A集合的交集為,故選A【點睛】一般地,把不等式組放在數軸中得出解集。10、A【解析】

設成立;反之,滿足,但,故選A.11、D【解析】

先求得名學生中,只能說出一種或一種也說不出的人數,由此利用比例,求得名學生中對四大發明只能說出一種或一種也說不出的人數.【詳解】在這100名學生中,只能說出一種或一種也說不出的有人,設對四大發明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點睛】本小題主要考查利用樣本估計總體,屬于基礎題.12、D【解析】因為角的終邊經過點,所以,則,即.故選D.二、填空題:本題共4小題,每小題5分,共20分。13、12【解析】

畫出約束條件的可行域,求出最優解,即可求解目標函數的最大值.【詳解】根據約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標函數y=3x-z,當y=3x-z過點(4,0)時,z有最大值,且最大值為12.故答案為:12.【點睛】本題考查線性規劃的簡單應用,屬于基礎題.14、【解析】

設,則,,由知,,,作,垂足為C,則C為的中點,在和中分別求出,進而求出的關系式,即可求出橢圓的離心率.【詳解】如圖,設,則,,由橢圓定義知,,因為,所以,,作,垂足為C,則C為的中點,在中,因為,所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點睛】本題考查橢圓的離心率和直線與橢圓的位置關系;利用橢圓的定義,結合焦點三角形和余弦定理是求解本題的關鍵;屬于中檔題、常考題型.15、3﹣4i【解析】

計算得到z2=(2+i)2=3+4i,再計算得到答案.【詳解】∵z=2+i,∴z2=(2+i)2=3+4i,則.故答案為:3﹣4i.【點睛】本題考查了復數的運算,共軛復數,意在考查學生的計算能力.16、①②③【解析】

由單調性、對稱性概念、導數的幾何意義、導數與極值的關系進行判斷.【詳解】函數的定義域是,由于,在上遞增,∴函數在上是遞增,①正確;,∴函數的圖象關于中心對稱,②正確;,時取等號,∴③正確;,設,則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數的單調性、對稱性,考查導數的幾何意義、導數與極值,解題時按照相關概念判斷即可,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(3)【解析】

(1)因為底面ABCD為梯形,且,所以四邊形BCDE為平行四邊形,則BE∥CD,又平面,平面,所以平面,又因為H為線段BE上的動點,的面積是定值,從而三棱錐的體積是定值.(2)因為平面,所以,結合BE∥CD,所以,又因為,,且E為AD的中點,所以四邊形ABCE為正方形,所以,結合,則平面,連接,則,因為平面,所以,因為,所以是等腰直角三角形,O為斜邊AC上的中點,所以,且,所以平面,所以PO是四棱錐的高,又因為梯形ABCD的面積為,在中,,所以.(3)以O為坐標原點,建立空間直角坐標系,如圖所示,則B(,0,0),C(0,,0),D(,,0),P(0,0,),則,設平面PBD的法向量為,則即則,令,得到,設BC與平面PBD所成的角為,則,所以,所以直線BC與平面PBD所成角的余弦值為.18、(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數可得直線的直角坐標系方程,由可得曲線的直角坐標方程;(2)將(為參數)代入曲線的方程得:,,利用韋達定理求解即可.試題解析:(1),曲線,(2)將(為參數)代入曲線的方程得:.所以.所以.19、(1)列聯表見解析,有的把握認為患心肺疾病與性別有關,理由見解析;(2).【解析】

(1)結合題意完善列聯表,計算出的觀測值,對照臨界值表可得出結論;(2)記不患心肺疾病的五位男性中從事戶外作業的兩人分別為、,其余三人分別為、、,利用列舉法列舉出所有的基本事件,并確定事件“所選的人中至少有一位從事的是戶外作業”所包含的基本事件數,利用古典概型的概率公式可取得所求事件的概率.【詳解】(1)由于在全部人中隨機抽取人,抽到患心肺疾病的人的概率為,所以人中患心肺疾病的人數為人,故可將列聯表補充如下:患心肺疾病不患心肺疾病合計男女合計.故有的把握認為患心肺疾病與性別有關;(2)記不患心肺疾病的五位男性中從事戶外作業的兩人分別為、,其余三人分別為、、.從中選取三人共有以下種情形:、、、、、、、、、.其中至少有一位從事的是戶外作業的有種情形,分別為:、、、、、、、、,所以所選的人中至少有一位從事的是戶外作業的概率為.【點睛】本題考查利用獨立性檢驗的基本思想解決實際問題,同時也考查了利用列舉法求解古典概型的概率問題,考查計算能力,屬于中等題.20、(I)x2=4aya>0,x-y+1=0【解析】

(I)利用所給的極坐標方程和參數方程,直接整理化簡得到直角坐標方程和普通方程;(II)聯立直線的參數方程和C的直角坐標方程,結合韋達定理以及等比數列的性質即可求得答案.【詳解】(I)曲線C:ρcos2可得ρ2cos2直線l的參數方程為x=-2+22t,x-y=-1,得x-y+1=0;(II)將x=-2+22t,y=-1+2t韋達定理:t1由題意得MN2=PM可得(t即32(a+1)解得a=【點睛】本題考查了極坐標方程、參數方程與直角坐標和普通方程的互化,以及參數方程的綜合知識,結合等比數列,熟練運用知識,屬于較易題.21、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論