




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
TransformingHealthcare
Administration:IndustryLanguageModelfor
MedicalCodeExtraction
RachitGupta,GenerativeAIIndustrySolutionsLead,CognizantSentheeshLingam,ChiefArchitect-GenerativeAI,Cognizant
1?2025-2027Cognizant|Private
ScalingEnterpriseAIwithCognizant&NVIDIA
Innovationmeets
manufacturingoperations
RevolutionizingServicesatScale
AIAgents
Agentfactory
DigitalTwin
NVIDIAOmniverse
IntegratingFoundationalelements,platformsandsolutions
Democratizationthroughplatformonplatform
Tailormademodels,deepdomainrelevance
IndustryLLMs
HealthcareLLM
·Al·
Cognizant?NeuroAI
NVIDIANIMTMl
AIFoundation
Data
RewireforAI-NVIDIARAPIDSm
Infrastructure
AIfactory-ServiceasaSoftware
2?2025-2027Cognizant|Private
TheeraofindustryspecificLLMs
IndustriesneedAIthatspeakstheirlanguage–Onesizedoesn’tfitall!
RELEVANT&EFFICIENTRESPONSES
ContextualAwarenessTaskOptimization
CUSTOMIZATION&ADAPTABILITY
FinetunedforspecifictasksEasierIntegration
EFFICIENCYGAINS
ReducedInferenceCostEfficientprocessing
HIGHERACCURACY&DEEPDOMAINEXPERTISE
UnderstandsComplexJargonsReducesHallucinations
IMPROVEDCOMPLIANCE&SECURITY
RegulatoryAlignment(LikeHIPAA,GDPR,SOX)BetterDataSecurity
Asvendorsbeginto
adaptcoreGenAItechnologiestoindustries
andbusinessdomains,expectthemarkettobe
complementedbyarichsetofsolutions
specializingbyrole,businessunitand
industrythroughH12025.
By2025,two-thirdsof
businesseswillleverageacombinationof
GenAIandretrieval-augmentedgenerationto
powerdomain-specificself-service
knowledgediscovery,improvingdecision
efficacyby50%.
By2027,over50%ofthegenerativeAI
modelsusedbyenterpriseswillbedomain-
specific(industryorbusinessfunction),
upfrom1%today.
3?2025-2027Cognizant|Private
Transforminghealthcaremanagementthroughoutthepayervaluechain
GenAIsolutionsacrossthehealthcarevaluechainreadytobepoweredbyhealthcarelanguagemodel
SalesandmarketingoperationsEstimated25-30%productivityincrease
ContractManagementandAdministration
Estimated40-50%decreaseincycletimes
AppealsandGrievance
Estimated30-40%productivityimprovement
MemberPlanShoppingAssistant
Estimated50-60%improvementinplanselection
AutomatedStarProfiling
Intuitiveinsights,benchmark
carequalityandcontextualrecommendations
MedicalCodeExtraction
20-60%effortsavingscomparedtomanualcodeextraction
FWAAssistant
Estimated40-50%effort
reductioninFWAcaseidentifyingandresearch
PriorAuthorizationAssistantEstimated20-30%productivity
improvement
Personalizedcareplangeneration
Improvedcaremanagerefficiencies(>20%)andhealthoutcomes
SupportedbyDeepDomainExpertiseandStrongEngineeringCapabilities
RichSMEBase
DataScienceCoE
NVIDIAAcceleratedComputing
NVIDIANeMoTM
NVIDIANIMTM
TriZetto
4?2025–2027Cognizant|Private
Medicalcodeextractioncontinuestobeamajorchallengeinhealthcare
…aproblemthatwearecansolvethroughindustrylanguagemodel
OPERATIONALCHALLENGES
Voiceof
MedicalCoders
“Thecodingsystemsaresocomplexanddynamiccodingstandardsmakesusmorepronetomistakes”
“Thepressuretomeetproductivitystandardssometimescompromisesouraccuracy”
“There'sashortageofcertified
coders,andtheworkloadcanbeoverwhelming”
Codingmistakescontributeto63%
ofallbillingerrors
Thereisanestimated30%
shortageofprofessionalmedicalcodersacrosstheUnitedStates
TECHNICALCHALLENGES
Modelspronetoerrorsduetolackofdomain-specificknowledge,resultingin
incorrectorirrelevantcodeassignments
Highhallucinationratesingeneralpurposemodels
Longertimeforretrievaland
processingrelevantinformation,
whichcanslowdownthecoding
process
Theannualmaintenance&
retrainingtokeepmodeluptodate
ishighforGeneral-purposemodels
orRAGmodels
HEALTHCAREORGANIZATIONAL
CHALLENGES
~$60+Billion
perAnnumLossforHospitalsduetocodingerrors
Constantupdatestocodingstandardsandnavigating
complexregulations
42%ofdenialsarecausedbycoding
issues,leadingtosignificantrevenue
losses
Around11%ofallclaimsaredenied,
withsomeprovidersexperiencing
denialratesashighas30%
5?2025–2027Cognizant|Private
Certifiedmedicalcodersdiscussobstaclesinextractingmedicalcodes
“Difficulttoextractspecific
“Combinationcodesare
codesduetolackofcontext
stemmingfromincomplete
medicalrecords”
complexinnatureandeven
tougherwhentryingtofindactive
conditions”
“MissingCodesdue
tomanualreadingof
largeparagraphs”
“Codershavetoparsethroughmultiple
documentssuchastreatmentplan
option,medicationrecordstoprovide
proofofconditionbeingactiveduring
theparticularencounter.
“MisinterpretingICD-10-CM
descriptions,leadingtoerrorsin
theguidelines,may
documentation.”
“Missingadd-oncodes,whichaffects
reimbursementanddataaccuracy”
“Notcapturingmorespecificdiagnoses,
impactcodingquality,leadingto
increasedauditreviews,
potentialcompliancerisks,anddelaysindatasubmission”
mappingcodestoclinical
unintentionally
overlookkeydetails”
leadingto
underreportingofpatient
conditions”
“Evenexperienced
coders,despiteknowing
“Thesechallengescansignificantly
6?2025–2027Cognizant|Private
Revolutionizingmedicalcodingwithprecisionandefficiency
Improvedoperationalefficiencyandconsistencythroughautomationandfinetuning
30%-40%
Improvedmedical
codingaccuracyandconsistencyas
comparedtogeneralpurposeLLMs
30%-75%
40%-45%
FastertimetomarketbyutilizingNVIDIA
NeMoTM
Reductionineffortforaccuratemedicalcodeextraction
*Dependingoncomplexity
Benefits
?ReducedLatency
?Significantcostandeffortsreduction
?EfficientRevenueCycleManagement
?AccurateRiskAdjustmentDetermination
?Improvementinquality-of-CareReportingCompliance
?Decreasedexposureofproprietaryhealthdata
7?2025-2027Cognizant|Private
3
Strategicfine-tuningapproachenhancedbyCognizant'sindustryknowledge
1DataPreparation
?Collection&InjectionofMedicaldomaintaxonomy,guidelinesandICDcodedesc.
?DatacurationusingNemoCurator
?Preparedredacted2k+clinical
notes&generated10k+syntheticdatausingNemoCurator
ModelFine-Tuning
?Medicaldomainadaptationusingmedicalterminologies,guidelinesandICD-10coding
?Fine-tuningmodelwithmedicalcodeextractiontasksutilizingsynthetic
data
?LeveragedParameter-EfficientFine-Tuning(PEFT);Low-Rank
Adaptation(LoRA)techniques
Strongtechnicalexpertiseinfine-tuningandcustomizinglanguagemodels
acrossdomains
1000+resourcestrainedandcertifiedacrossNVIDIA,GCP,GenerativeAI.
4ModelInference
?Modeldeployment,provisioning&configurationusingNIMcontainer
?Medicalcodeextractionbusinessappbuildanddeployment
?ModelMonitoring,performance&scalability
Agenticmodulararchitectureforeasyscalability
SeamlessintegrationwithenterpriseappsandTriZettoproductecosystem
2Benchmarking
?Selectionofmedicaldomainandopen-sourcemodels
?Baseliningusingdifferent
approachessuchasRAG,CoT,fewshot
?Defineandevaluatemodels
ExperiencedSMEbase-300+AAPCcertifiedcoderswitha
proventrackrecordonsensitivesubmissions(e.g.,toCMS)
Accesstorichand
diverse2000+datasetsandontologies
Cognizant’sValue
TriZettoproductandhealthcaredomainexpertiseinmodelvalidation
LeverageCognizant’sbenchmarkingframeworkonNVIDIAevaluator
NVIDIA
NeMoCurator
NeMoCustomizer,Evaluator
NeMoEvaluator
NeMoRetriever,Guardrails,NIM(LoRA)
TechStack
8?2025–2027Cognizant|Private
Blueprintforsuccessfulfine-tuning:solutionarchitecture
NVIDIAAccelerated
Computing&NVIDIANIMTM
?ParallelProcessingPower-Training
epochsupto28timesfasterthan8-coreCPU
?EnergyEfficient-NVIDIANIMTMwith
TensorRT-LLMoptimizesLLMsinferencereducingenergyconsumptionbyupto3x
?Highmemorybandwidth-Fastertransferbetweencoreandmemory,MinimizeAI
modeltrainingandinference
2BENCHMARKINGSME
1DATAPREPARATION
NVIDIAAccelerated
Computing
NVIDIAAcceleratedComputing
GradioUI
UploadMedical
Notes
CloudRun
CloudStorageData
Model
Evaluator
SyntheticDataGenerator
Indexer
VectorSearch
VertexAI
NeMo
Curator
NeMo
Customizer
NeMo
Evaluator
NeMo
Retriever
NeMo
Guardrails
BigQuery
NVIDIA
NIM
NeMo
Customizer
NeMo
Evaluator
NeMo
Retriever
NeMo
Guardrails
NVIDIANIM
NeMo
Curator
NVIDIANeMoTM
NVIDIANeMoTM
NVIDIAAIEnterpriseTM
NVIDIAAIEnterpriseTM
4MODELINFERENCE
NVIDIANGCRegistry
FINE-TUNING
3
NVIDIA
AcceleratedComputing
NVIDIAAcceleratedComputing
CloudOps
Operations
Security
IAM
NVIDIANeMoTM
?LowCode,FasterBuild
?Time&EffortEfficiency-maximizesthroughputandminimizestrainingtimewithmulti-node,multi-GPUtrainingandinference
FineTunedModel
Fine-TuningJobs
OpenSourceModel
UI
MedicalCoder
NeMoCurator
NeMo
Customizer
NeMo
Evaluator
NVIDIA
NIM(LORA)
NeMo
Retriever
NeMo
Guardrails
Rules
Firewall
NeMo
Evaluator
NeMo
Retriever
NeMo
Guardrails
NVIDIANIM
NeMo
Curator
NeMo
Customizer
NVIDIANeMoTM
LocalStorage
NVIDIAAIEnterpriseTM
NVIDIANeMoTM
NVIDIAAIEnterpriseTM
NVIDIANGCREGISTRY
?ComprehensiveAIresources
?AcceleratedWorkflows
?EaseofIntegration
?RichDocumentationandSupport
9?2025-2027Cognizant|Private
Datasetpreparationformedicalcodeextraction&evaluation
SyntheticDataGeneration
MedicalDocumentsTypes
SamplingGenerationMethodology
?Samplesgeneratedfroma
subsetofICD-10codeschosenfromasetof~80kcodes
?ICDcodesweregrouped
togetherbasedonpotential
medicalconditionsthatcanco-exists.
?Samplenoteswereeach
groupingdescribingoneormorepossiblemedicalcondition
?SyntheticnotesweregeneratedforallICDcodegroupings.
?SyntheticcodeswerevalidatedbySME
?WellnessForms
?PhysicianConsultProgressNote
?DischargeSummary
?PatientHistory
?ExaminationFindings
ComplexityEvaluation
?Identifyingfactorscontributingtothecomplexity
?Grouping&scoringtheindividualfactorcontributiontowards
complexity
?Identifyingthepresenceof
contributingfactorsinmedicaldocuments
?ClassifyingandScoringdocuments
MedicalCodingHierarchy
10?2025-2027Cognizant|Private
EvaluatingLLMsbasedondocumentintricacyandpromptingmethod
Accuracybycomplexity
35
39%
40%
14%
36
7%
%
%
13%
22%
%
5%
15
8%
22%
2
ParentLevelAccuracybyComplexity
MedLM
Llama-2
Llama
Gemini
DeepSeek-R1
0%10%20%30%40%50%
MediumLow
High
1
3%
1
ChildLevelAccuracybyComplexity
MedLM
Llama-2
Llama
Gemini
DeepSeek-R1
15%
19%
1%
1%
5%
9%
13%
8%
2%
10%
29%
MediumLow
High
0%5%10%15%20%25%30%
AccuracybyApproach
MedLMLlama-2Llama
Gemini
DeepSeek-R1
ParentLevelAccuracybyApproach
5%
12%
13%
2
29%
6%
30%
52%
0%10%20%30%40%50%60%
RAG
Direct
MedLMLlama-2Llama
Gemini
DeepSeek-R1
ChildLevelAccuracybyApproach
RAG
Direct
11%
37%
5%
6%
12%
15%
2%
0%10%20%30%40%
KeyConsiderations:
?Benchmarkingacrossbothopensourceandcommercialmodels
?Medicaldocumentscategorizedbycomplexitylevelsforevaluation
?MultipleapproachesconsideredforevaluatingmodelperformanceincludingRAGapproach
?Extractedmedicalcodes(ICD-10)werematchedbothatparent&childlevels
KeyObservations
?Opensourcemodelstrainedinmedicaldomainperformbetterthangenericmodels
?RAGapproachimprovestheperformanceofallmodels
?Datacomplexityhashugeimpactonmodel
performanceparticularlywhenmultiple
scenariosarepresentinthemedicaldocuments
?Extractingaccuratechildcodesischallengingformostmodels
11?2025-2027Cognizant|Private
Challengesimpactingtheaccuracyofmedicalcodesextraction
HIGHCOMPLEXITY
MissedDiagnosesinDischargeNotes
Missedcodingspecificity
InaccurateICDCodePrediction
Missed'InitialEncounter'Coding
Missed'Z'CodesforHealthStatus
UninterpretedAbbreviations
MEDIUMCOMPLEXITY
Invalidcodeprediction
Hallucination
Entity-CodeMismatch
Missed'Acute'vs.'Chronic
LOWCOMPLEXITY
Missed's/p'(StatusPost)
Condition
Missedcommonterms
12?2025-2027Cognizant|Private
Ourapproachaimstoreplicatethereasoningprocessofamedicalcoder
MedicalCoder
SearchwithintheAlphabetic
IndextofindtheICD-10codeforspecificmedicalentitiesor
conditions.
IdentifyMedicalEntities
fromclinicalnotesfor
diagnosis,symptoms,
support,historical
statements,referrals,plans,andhealthstatuschanges.
Chapter-wiseGuideline
ChecktovalidatetheICD-10CMcodeagainstchapter-
specificguidelinesandgeneralcodingconventions.
ReviewICD-10CodefromtheICD-10-CMTabularListofDiseasesandInjuriestoensureitmatchesthe
patient’sdiagnosis.Identifyanynotesimpactingthecodeselectionalong
withidentificationofadditional
characters/codestobestsuitthediagnosis.
Finalization
?FamiliarizewithmedicaltaxonomytomapclinicaltermstoICD-10codes.
?Identifycommonmedicalabbreviationstoaccuratelyinterpretclinical
conditions.
?StudyconventionsandgeneralcodingguidelinesfromtheICD-10-CMOfficialGuidelines.
ExtractionLookup
Validation
Foundation
ICD-10CodesGeneration
?LeveragedtheenhancedfinetunedLLMsknowledgebasetoidentifytheICD-10codesfromtheextractedmedicalentities.
ICD-10CodesFinalization
?CatalogthefinallistofICD-10whicharerelevanttothecontextofthedocumentandadheringtotheadditional
requirementstobestsuitthecontent.
ICD-10GuidelineValidations
?ValidatedtheidentifiedICD-10codesagainstchapter-
specificguidelinesand
generalcodingconventionsusingPromptEngineeringtoensureadherencetocodingprotocols.
MedicalEntityExtraction
?SuccessfullyimplementedaLoRAbasedfinetuning
approachtofurthertraintheLLMsharnessingSyntheticMedicalDocuments.
?Leveragingtheaugmented
knowledgebase,specific
MedicalentitiesareextractedviaQ&Aprompting.
DomainSpecificFinetuning
?AugmentedtheexistingknowledgebaseoftheLLMswithICD-10-CM
OfficialGuidelines,AMAGlossaryofMedicalterms,ICD-10-CMIndex
documents
?SupervisedFinetuningapproachisimplementedtoexpandtheLLM’sexistingknowledgebank.
HealthcareLanguagemodel
13?2025–2027Cognizant|Private
ICD10CodeExtraction
Pre-trainedmodel
ExtractedICD10Codes:
['T446X5S','T444X5S']
ExpectationMatch:0%
Fine-tunedmodel
ExtractedICD10Codes:
['I497','K850','M6282','I2690','E119','N185','I420','H4410','I230','N400']
ExpectationMatch:40%
Analysisoffine-tunedmodeloutputforhighlycomplexclinicalnotes
Expectedentitiesinclinicalnote
BeforeFinetuning
AfterFinetuning
Acuterenalfailurerequiringhaemodialysis
√
√
Amiodaronetoxicityoflungandliver
√
√
Anaemiaduetobloodloss
?
√
Atrialfibrillation
?
√
Benignprostatichypertrophy
?
√
Cardiomyopathy
?
√
Chronicobstructivepulmonarydisease
?
√
Chronicrenalfailure
?
√
Diabetestype2withretinopathy
?
√
Hypercholesterolemia
?
√
Hypertension
?
√
NPHinsulin5mgq.a.m.,3mgq.hs.
?
?
Peripheralvasculardisease
?
√
Pneumonia
?
√
Systoliccongestiveheartfailure
?
√
Tachy-bradysyndromestatuspostDDDpacemakerplacement
?
√
14?2025-2027Cognizant|Private
Overviewoftheresultsfromthefine-tunedmodel
Accuracy&CoverageComparison:Llama(8b)Model
38%22%
10%
LowComplexity
100%
80%
60%
40%
20%
0%
78%64%
43%
30%
18%
%Parent
Coverage
%Child
Coverage
ParentAccuracy
Child
Accuracy
BaselineModelFinetunedModel
18%
70%
60%
50%
40%
30%
20%
10%
0%
MediumComplexity
63%
52%
32%33%27%27%
13%
%Parent
Coverage
%Child
Coverage
ParentAccuracy
Child
Accuracy
BaselineModelFinetunedModel
59%
Increaseinoverallaccuracy
78%
IncreaseinOverallAccuracy&
Coverage(weightedaccuracy)
HighComplexity
100%
80%
60%
40%
20%
0%
83%
59%
42%
28%
23%
19%
13%
11%
%Parent
Coverage
%Child
Coverage
Child
Accuracy
ParentAccuracy
BaselineModelFinetunedModel
KeyConsiderations:
?Themodelwasrefinedprogressivelyusingvarioussyntheticdatasetsthatvaryincomplexityandbatchsizes.
?TechniquessuchasLoRaandSFTwereappliedformodelfine-tuning.
?Themodelunderwentinstructionfine-tuningforICD10codeextraction.
?Chainofthoughtstrategieswereemployedtoenhancethe
model'sperformanceincodeextraction,ensuringreasoningandjustificationduringinference.
KeyObservations
?TheRAG-basedmethodappliedtothefine-tunedmodel
enhancedtheoverallperformanceacrossallmodels.
?
Fine-tunedmodelsdemonstratedsuperiorcapabilitiesinhandlingcomplexstructureddocumentsthatnecessitatelinking
informationfoundindifferentsections.
?Thesemodelsachievedimprovedoutcomeswithoutrelyingon
extensivepromptingtechniquesorintricateRAGmethods.
15?2025-2027Cognizant|Private
Applicationofafine-tunedmodel-extractingmedicalcodes
?AutomatedICDCoding:Thesystem
automatesICDcodeextractionfrom
medicaldocuments,reducingmanualeffortandpotentialerrors.
?Two-PassApproachforAccuracy:Atwo-passapproachleveragesGenAItoinitiallyidentifypossibleICDcodesandthenrefinetheselectionwithfulldocumentcontext.
?DiagnosisTermRecognition&Mapping:UtilizesGenAItoidentifydiagnosisterms
withinmedicaldocumentsandmapsthemtocorrespondingICDcodesviaanExceldatabase.
?ContextualFilteringforPrecision:
SecondpassincorporatesthefullmedicaldocumentascontexttofilterandrefinetheinitialsetofICDcodes.
?User-FriendlyInterfacewithExclusionFunctionality:
TheUIoffersafeaturetoexclude
specificdiagnosisterms,providingusercontroloverthecodeextractionprocess.Model
16?2025-2027Cognizant|Private
CognizantTriZetto?agenticAIsystemleadingthetransformationofcore
ad
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告位租賃合同協議圍擋
- 勞務合同移交協議
- 書本代理協議合同
- 種植轉讓協議合同
- 合同變更協議期限
- 廢舊車輛買賣合同協議書
- 品牌維護合同協議
- 購銷合同撤銷協議
- 廢舊回收協議合同
- 房地產裝修協議合同
- 2024年國家林業和草原局直屬單位招聘考試真題
- 2025年浙江省杭州市余杭區中考語文模擬試卷含答案
- 攤鋪機租賃合同協議書范本
- 兒童畫教材課件
- 國家安全教育日知識競賽考試題庫400題(含答案)
- 河南省鄭州市2025年高中畢業年級第二次質量預測英語試題(含答案無聽力原文及音頻)
- 用戶畫像的構建與應用試題及答案
- 廣東省2025年普通高等學校招生全國統一考試模擬測試(一)英語試題及答案
- 2025年湖南省長沙市初中學業水平考試模擬(一)歷史試題(原卷版+解析版)
- 化學計量(5大易錯點)-2025年高考化學復習易錯題(含解析)
- 2025年中考道德與法治全真模擬卷1(含答案解析)
評論
0/150
提交評論