湖北省宜昌市七校教學協作體2023-2024學年高三下學期(5月)三調數學試題試卷_第1頁
湖北省宜昌市七校教學協作體2023-2024學年高三下學期(5月)三調數學試題試卷_第2頁
湖北省宜昌市七校教學協作體2023-2024學年高三下學期(5月)三調數學試題試卷_第3頁
湖北省宜昌市七校教學協作體2023-2024學年高三下學期(5月)三調數學試題試卷_第4頁
湖北省宜昌市七校教學協作體2023-2024學年高三下學期(5月)三調數學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省宜昌市七校教學協作體2022-2023學年高三下學期(5月)三調數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,則關于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線2.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數字為莖,個位數字為葉).若甲隊得分的中位數是86,乙隊得分的平均數是88,則()A.170 B.10 C.172 D.123.定義在R上的偶函數f(x)滿足f(x+2)=f(x),當x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)4.將函數圖象向右平移個單位長度后,得到函數的圖象關于直線對稱,則函數在上的值域是()A. B. C. D.5.根據如圖所示的程序框圖,當輸入的值為3時,輸出的值等于()A.1 B. C. D.6.已知為定義在上的奇函數,若當時,(為實數),則關于的不等式的解集是()A. B. C. D.7.1777年,法國科學家蒲豐在宴請客人時,在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個客人發許多等質量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對針落地的位置進行統計,發現共投針2212枚,與直線相交的有704枚.根據這次統計數據,若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.8.設函數的導函數,且滿足,若在中,,則()A. B. C. D.9.已知函數的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.10.函數的圖象大致是()A. B.C. D.11.小明有3本作業本,小波有4本作業本,將這7本作業本混放在-起,小明從中任取兩本.則他取到的均是自己的作業本的概率為()A. B. C. D.12.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數,則()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知多項式的各項系數之和為32,則展開式中含項的系數為______.14.在平面直角坐標系中,點在單位圓上,設,且.若,則的值為________________.15.設,則______.16.如圖,是圓的直徑,弦的延長線相交于點垂直的延長線于點.求證:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知直線的參數方程為(為參數),圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系.(1)求和的極坐標方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.18.(12分)在平面直角坐標系中,有一個微型智能機器人(大小不計)只能沿著坐標軸的正方向或負方向行進,且每一步只能行進1個單位長度,例如:該機器人在點處時,下一步可行進到、、、這四個點中的任一位置.記該機器人從坐標原點出發、行進步后落在軸上的不同走法的種數為.(1)分別求、、的值;(2)求的表達式.19.(12分)已知函數的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數的取值范圍.20.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大小;(2)求點到平面的距離.21.(12分)等差數列的前項和為,已知,.(Ⅰ)求數列的通項公式及前項和為;(Ⅱ)設為數列的前項的和,求證:.22.(10分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據條件,方程.即,結合雙曲線的標準方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,

方程,即,表示實軸在y軸上的雙曲線,

故選C.【點睛】本題考查雙曲線的標準方程的特征,依據條件把已知的曲線方程化為是關鍵.2.D【解析】

中位數指一串數據按從小(大)到大(小)排列后,處在最中間的那個數,平均數指一串數據的算術平均數.【詳解】由莖葉圖知,甲的中位數為,故;乙的平均數為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應用,涉及到中位數、平均數的知識,是一道容易題.3.B【解析】

根據函數的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數f(x)在定義域上的圖象,由此結合選項判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據周期為2依次平移,并結合f(x)是偶函數作出f(x)在R上的圖象如下,選項A,,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項B正確;選項C,,所以,即,選項C錯誤;選項D,,選項D錯誤.故選:B.【點睛】本題考查函數性質的綜合運用,考查函數值的大小比較,考查數形結合思想,屬于中檔題.4.D【解析】

由題意利用函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,求得結果.【詳解】解:把函數圖象向右平移個單位長度后,可得的圖象;再根據得到函數的圖象關于直線對稱,,,,函數.在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,屬于中檔題.5.C【解析】

根據程序圖,當x<0時結束對x的計算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時x>0繼續運行,x=1-2=-1<0,程序運行結束,得,故選C.【點睛】本題考查程序框圖,是基礎題.6.A【解析】

先根據奇函數求出m的值,然后結合單調性求解不等式.【詳解】據題意,得,得,所以當時,.分析知,函數在上為增函數.又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數的性質應用,側重考查數學抽象和數學運算的核心素養.7.D【解析】

根據統計數據,求出頻率,用以估計概率.【詳解】.故選:D.【點睛】本題以數學文化為背景,考查利用頻率估計概率,屬于基礎題.8.D【解析】

根據的結構形式,設,求導,則,在上是增函數,再根據在中,,得到,,利用余弦函數的單調性,得到,再利用的單調性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數,在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數與函數的單調性,還考查了運算求解的能力,屬于中檔題.9.D【解析】

運用輔助角公式,化簡函數的解析式,由對稱軸的方程,求得的值,得出函數的解析式,集合正弦函數的最值,即可求解,得到答案.【詳解】由題意,函數為輔助角,由于函數的對稱軸的方程為,且,即,解得,所以,又由,所以函數必須取得最大值和最小值,所以可設,,所以,當時,的最小值,故選D.【點睛】本題主要考查了正弦函數的圖象與性質,其中解答中利用三角恒等變換的公式,化簡函數的解析式,合理利用正弦函數的對稱性與最值是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.10.A【解析】

根據復合函數的單調性,同增異減以及采用排除法,可得結果.【詳解】當時,,由在遞增,所以在遞增又是增函數,所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數的大致圖象的判斷,關鍵在于對復合函數單調性的理解,記住常用的結論:增+增=增,增-減=增,減+減=減,復合函數單調性同增異減,屬中檔題.11.A【解析】

利用計算即可,其中表示事件A所包含的基本事件個數,為基本事件總數.【詳解】從7本作業本中任取兩本共有種不同的結果,其中,小明取到的均是自己的作業本有種不同結果,由古典概型的概率計算公式,小明取到的均是自己的作業本的概率為.故選:A.【點睛】本題考查古典概型的概率計算問題,考查學生的基本運算能力,是一道基礎題.12.C【解析】

根據古典概型概率計算公式,計算出概率并求得數學期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數學期望的計算,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

令可得各項系數和為,得出,根據第一個因式展開式的常數項與第二個因式的展開式含一次項的積與第一個因式展開式含x的一次項與第二個因式常數項的積的和即為展開式中含項,可得解.【詳解】令,則得,解得,所以展開式中含項為:,故答案為:【點睛】本題主要考查了二項展開式的系數和,二項展開式特定項,賦值法,屬于中檔題.14.【解析】

根據三角函數定義表示出,由同角三角函數關系式結合求得,而,展開后即可由余弦差角公式求得的值.【詳解】點在單位圓上,設,由三角函數定義可知,因為,則,所以由同角三角函數關系式可得,所以故答案為:.【點睛】本題考查了三角函數定義,同角三角函數關系式的應用,余弦差角公式的應用,屬于中檔題.15.121【解析】

在所給的等式中令,,令,可得2個等式,再根據所得的2個等式即可解得所求.【詳解】令,得,令,得,兩式相加,得,所以.故答案為:.【點睛】本題主要考查二項式定理的應用,考查學生分析問題的能力,屬于基礎題,難度較易.16.證明見解析.【解析】試題分析:四點共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因為為圓的直徑,所以,又,則四點共圓,所以.又△∽△,所以,即,∴.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)直接利用轉換公式,把參數方程,直角坐標方程與極坐標方程進行轉化;(2)利用極坐標方程將轉化為三角函數求解即可.【詳解】(1)因為,所以的普通方程為,又,,,的極坐標方程為,的方程即為,對應極坐標方程為.(2)由己知設,,則,,所以,又,,當,即時,取得最小值;當,即時,取得最大值.所以,的取值范圍為.【點睛】本題主要考查了直角坐標方程,參數方程與極坐標方程的互化,三角函數的值域求解等知識,考查了學生的運算求解能力.18.(1),,,(2)【解析】

(1)根據機器人的進行規律可確定、、的值;(2)首先根據機器人行進規則知機器人沿軸行進步,必須沿軸負方向行進相同的步數,而余下的每一步行進方向都有兩個選擇(向上或向下),由此結合組合知識確定機器人的每一種走法關于的表達式,并得到的表達式,然后結合二項式定理及展開式的通項公式進行求解.【詳解】解:(1),,(2)設為沿軸正方向走的步數(每一步長度為1),則反方向也需要走步才能回到軸上,所以,1,2,……,,(其中為不超過的最大整數)總共走步,首先任選步沿軸正方向走,再在剩下的步中選步沿軸負方向走,最后剩下的每一步都有兩種選擇(向上或向下),即等價于求中含項的系數,為其中含項的系數為故.【點睛】本題考查組合數、二項式定理,考查學生的邏輯推理能力,推理論證能力以及分類討論的思想.19.(1);(2).【解析】

(1)利用定義法求出函數在上單調遞增,由和,求出,求出,運用單調性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調遞增,恒成立,設,利用三角恒等變換化簡,結合恒成立的條件,構造新函數,利用單調性和最值,求出實數的取值范圍.【詳解】(1)設,,所以函數在上單調遞增,又因為和,則,所以得解得,即,故的取值范圍為;(2)由于恒成立,恒成立,設,則,令,則,所以在區間上單調遞增,所以,根據條件,只要,所以.【點睛】本題考查利用定義法求函數的單調性和利用單調性求不等式的解集,考查不等式恒成立問題,還運用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉化思想和解題能力.20.(1);(2).【解析】

(1)建立空間坐標系,通過求向量與向量的夾角,轉化為異面直線與直線所成的角的大小;(2)先求出面的一個法向量,再用點到面的距離公式算出即可.【詳解】以為原點,所在直線分別為軸建系,設所以,,所以異面直線與直線所成的角的余弦值為,異面直線與直線所成的角的大小為.(2)因為,,設是面的一個法向量,所以有即,令,,故,又,所以點到平面的距離為.【點睛】本題主要考查向量法求異面直線所成角的大小和點到面的距離,意在考查學生的數學建模以及數學運算能力.21.(Ⅰ),(Ⅱ)見解析【解析】

(Ⅰ)根據等差數列公式直接計算得到答案.(Ⅱ),根據裂項求和法計算得到得到證明.【詳解】(Ⅰ)等差數列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【點睛】本題考查了等差數列的基本量的計算,裂項求和,意在考查學生對于數列公式方法的靈活運用.22.;①;②.【解析】

根據題意列出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論