2025屆安徽省滁州市鳳陽縣第二中學高三沖刺模考數學試題試卷_第1頁
2025屆安徽省滁州市鳳陽縣第二中學高三沖刺模考數學試題試卷_第2頁
2025屆安徽省滁州市鳳陽縣第二中學高三沖刺模考數學試題試卷_第3頁
2025屆安徽省滁州市鳳陽縣第二中學高三沖刺模考數學試題試卷_第4頁
2025屆安徽省滁州市鳳陽縣第二中學高三沖刺模考數學試題試卷_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省滁州市鳳陽縣第二中學高三沖刺模考數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.2.若的展開式中的系數之和為,則實數的值為()A. B. C. D.13.已知為等腰直角三角形,,,為所在平面內一點,且,則()A. B. C. D.4.公比為2的等比數列中存在兩項,,滿足,則的最小值為()A. B. C. D.5.集合的子集的個數是()A.2 B.3 C.4 D.86.如圖所示程序框圖,若判斷框內為“”,則輸出()A.2 B.10 C.34 D.987.已知集合,則集合()A. B. C. D.8.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.9.函數的圖象的大致形狀是()A. B. C. D.10.已知為坐標原點,角的終邊經過點且,則()A. B. C. D.11.已知角的終邊與單位圓交于點,則等于()A. B. C. D.12.已知實數、滿足不等式組,則的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直角三角形中,為直角,,點在線段上,且,若,則的正切值為_____.14.已知函數有且只有一個零點,則實數的取值范圍為__________.15.函數的定義域為,其圖象如圖所示.函數是定義域為的奇函數,滿足,且當時,.給出下列三個結論:①;②函數在內有且僅有個零點;③不等式的解集為.其中,正確結論的序號是________.16.已知復數z1=1﹣2i,z2=a+2i(其中i是虛數單位,a∈R),若z1?z2是純虛數,則a的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在如圖所示的多面體中,平面平面,四邊形是邊長為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且,,(1)若分別為,的中點,求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值.18.(12分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現統計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數表:亮燈時長/頻數1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設表示這10000盞燈在某一時刻亮燈的數目.①求的數學期望和方差;②若隨機變量滿足,則認為.假設當時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結果保留為整數).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.19.(12分)第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關法規宣傳普及的關系,對某試點社區抽取戶居民進行調查,得到如下的列聯表.分類意識強分類意識弱合計試點后試點前合計已知在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為.(1)請將上面的列聯表補充完整,并判斷是否有的把握認為居民分類意識的強弱與政府宣傳普及工作有關?說明你的理由;(2)已知在試點前分類意識強的戶居民中,有戶自覺垃圾分類在年以上,現在從試點前分類意識強的戶居民中,隨機選出戶進行自覺垃圾分類年限的調查,記選出自覺垃圾分類年限在年以上的戶數為,求分布列及數學期望.參考公式:,其中.下面的臨界值表僅供參考20.(12分)在中,內角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當的面積取得最大值時,求AD的長.21.(12分)已知函數.(1)當時,求曲線在點的切線方程;(2)討論函數的單調性.22.(10分)已知數列滿足:對一切成立.(1)求數列的通項公式;(2)求數列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

先設直線與圓相切于點,根據題意,得到,再由,根據勾股定理求出,從而可得漸近線方程.【詳解】設直線與圓相切于點,因為是以圓的直徑為斜邊的圓內接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質即可,屬于常考題型.2.B【解析】

由,進而分別求出展開式中的系數及展開式中的系數,令二者之和等于,可求出實數的值.【詳解】由,則展開式中的系數為,展開式中的系數為,二者的系數之和為,得.故選:B.【點睛】本題考查二項式定理的應用,考查學生的計算求解能力,屬于基礎題.3.D【解析】

以AB,AC分別為x軸和y軸建立坐標系,結合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數量積的運算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.4.D【解析】

根據已知條件和等比數列的通項公式,求出關系,即可求解.【詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【點睛】本題考查等比數列通項公式,注意為正整數,如用基本不等式要注意能否取到等號,屬于基礎題.5.D【解析】

先確定集合中元素的個數,再得子集個數.【詳解】由題意,有三個元素,其子集有8個.故選:D.【點睛】本題考查子集的個數問題,含有個元素的集合其子集有個,其中真子集有個.6.C【解析】

由題意,逐步分析循環中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【點睛】本題考查了程序框圖,只需在理解程序框圖的前提下細心計算即可,屬于基礎題.7.D【解析】

弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎題.8.B【解析】

根據組合知識,計算出選出的人分成兩隊混合雙打的總數為,然后計算和分在一組的數目為,最后簡單計算,可得結果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數為:和分在一組的數目為所以所求的概率為故選:B【點睛】本題考查排列組合的綜合應用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.9.B【解析】

根據函數奇偶性,可排除D;求得及,由導函數符號可判斷在上單調遞增,即可排除AC選項.【詳解】函數易知為奇函數,故排除D.又,易知當時,;又當時,,故在上單調遞增,所以,綜上,時,,即單調遞增.又為奇函數,所以在上單調遞增,故排除A,C.故選:B【點睛】本題考查了根據函數解析式判斷函數圖象,導函數性質與函數圖象關系,屬于中檔題.10.C【解析】

根據三角函數的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結果.【詳解】根據題意,,解得,所以,所以,所以.故選:C.【點睛】本題考查三角函數定義的應用和二倍角的正弦公式,考查計算能力.11.B【解析】

先由三角函數的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點,,故選:B【點睛】考查三角函數的定義和二倍角公式,是基礎題.12.A【解析】

畫出不等式組所表示的平面區域,結合圖形確定目標函數的最優解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區域,如圖所示,由目標函數,化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數取得最大值,又由,解得,所以目標函數的最大值為,故選A.【點睛】本題主要考查簡單線性規劃求解目標函數的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數的最優解是解答的關鍵,著重考查了數形結合思想,及推理與計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.3【解析】

在直角三角形中設,,,利用兩角差的正切公式求解.【詳解】設,,則,故.故答案為:3【點睛】此題考查在直角三角形中求角的正切值,關鍵在于合理構造角的和差關系,其本質是利用兩角差的正切公式求解.14.【解析】

當時,轉化條件得有唯一實數根,令,通過求導得到的單調性后數形結合即可得解.【詳解】當時,,故不是函數的零點;當時,即,令,,,當時,;當時,,的單調減區間為,增區間為,又,可作出的草圖,如圖:則要使有唯一實數根,則.故答案為:.【點睛】本題考查了導數的應用,考查了轉化化歸思想和數形結合思想,屬于難題.15.①③【解析】

利用奇函數和,得出函數的周期為,由圖可直接判斷①;利用賦值法求得,結合,進而可判斷函數在內的零點個數,可判斷②的正誤;采用換元法,結合圖象即可得解,可判斷③的正誤.綜合可得出結論.【詳解】因為函數是奇函數,所以,又,所以,即,所以,函數的周期為.對于①,由于函數是上的奇函數,所以,,故①正確;對于②,,令,可得,得,所以,函數在區間上的零點為和.因為函數的周期為,所以函數在內有個零點,分別是、、、、,故②錯誤;對于③,令,則需求的解集,由圖象可知,,所以,故③正確.故答案為:①③.【點睛】本題考查函數的圖象與性質,涉及奇偶性、周期性和零點等知識點,考查學生分析問題的能力和數形結合能力,屬于中等題.16.-1【解析】

由題意,令即可得解.【詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數,∴,解得:a=﹣1.故答案為:﹣1.【點睛】本題考查了復數的概念和運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】試題分析:(1)第(1)問,轉化成證明平面,再轉化成證明和.(2)第(2)問,先利用幾何法找到與平面所成角,再根據與平面所成角的正弦值為求出再建立空間直角坐標系,求出二面角的余弦值.試題解析:(1)連接,因為四邊形為菱形,所以.因為平面平面,平面平面,平面,,所以平面.又平面,所以.因為,所以.因為,所以平面.因為分別為,的中點,所以,所以平面(2)設,由(1)得平面.由,,得,.過點作,與的延長線交于點,取的中點,連接,,如圖所示,又,所以為等邊三角形,所以,又平面平面,平面平面,平面,故平面.因為為平行四邊形,所以,所以平面.又因為,所以平面.因為,所以平面平面.由(1),得平面,所以平面,所以.因為,所以平面,所以是與平面所成角.因為,,所以平面,平面,因為,所以平面平面.所以,,解得.在梯形中,易證,分別以,,的正方向為軸,軸,軸的正方向建立空間直角坐標系.則,,,,,,由,及,得,所以,,.設平面的一個法向量為,由得令,得m=(3,1,2)設平面的一個法向量為,由得令,得.所以又因為二面角是鈍角,所以二面角的余弦值是.18.(1)(2)①,,②72【解析】

(1)將每組數據的組中值乘以對應的頻率,然后再將結果相加即可得到亮燈時長的平均數,將此平均數除以(個小時),即可得到的估計值;(2)①利用二項分布的均值與方差的計算公式進行求解;②先根據條件計算出的取值范圍,然后根據并結合正態分布概率的對稱性,求解出在滿足取值范圍下對應的概率.【詳解】(1)平均時間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時間長度為72分鐘.【點睛】本題考查根據頻數分布表求解平均數、幾何概型(長度模型)、二項分布的均值與方差、正態分布的概率計算,屬于綜合性問題,難度一般.(1)如果,則;(2)計算正態分布中的概率,一定要活用正態分布圖象的對稱性對應概率的對稱性.19.(1)有的把握認為居民分類意識強與政府宣傳普及工作有很大關系.見解析(2)分布列見解析,期望為1.【解析】

(1)由在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為可得列聯表,然后計算后可得結論;(2)由已知的取值分別為,分別計算概率得分布列,由公式計算出期望.【詳解】解:(1)根據在抽取的戶居民中隨機抽取戶,到分類意識強的概率為,可得分類意識強的有戶,故可得列聯表如下:分類意識強分類意識弱合計試點后試點前合計因為的觀測值,所以有的把握認為居民分類意識強與政府宣傳普及工作有很大關系.(2)現在從試點前分類意識強的戶居民中,選出戶進行自覺垃圾分類年限的調查,記選出自覺垃圾分類年限在年以上的戶數為,則0,1,2,3,故,,,,則的分布列為.【點睛】本題考查獨立性檢驗,考查隨機變量的概率分布列和數學期望.考查學生的數據處理能力和運算求解能力.20.(1);(2).【解析】

(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,,而,故當時,的面積取得最大值,此時,,在中,再利用余弦定理即可解決.【詳解】(1)由正弦定理及已知得,結合,得,因為,所以,由,得.(2)在中,由余弦定得,因為,所以,當且僅當時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論