




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
AIdisruptionis
drivinginnovationinon-deviceinference
HowtheproliferationandevolutionofgenerativemodelswilltransformtheAIlandscapeandunlockvalue.
February2025
SnapdragonandQualcommbrandedproductsareproductsofQualcommTechnologies,Inc.and/oritssubsidiaries.
2
Contents
Executivesummary 3
QualityAImodelsarenowabundantanda<ordable 4
Innovationsboostmodelqualityandreducedevelopmenttimeandcost 4
Smallmodelsachievebigcapabilitiesattheedge 5
TheeraofAIinferenceinnovationishere 7
QualcommissettobealeaderintheAIinferenceera 8
Expandingacrossallkeyedgesegments 9
Mobile 9
PCs 10
Automotive 10
IndustrialIoT 11
Networking 11
Conclusion 11
3
Executivesummary
TheintroductionofDeepSeekR1,acutting-edgereasoningAImodel,hascausedripplesthroughoutthetechindustry.That’sbecauseitsperformanceisonparwithorbetterthanstate-of-the-artalternatives,disruptingtheconventionalwisdomaroundAIdevelopment.
Thispivotalmomentispartofabroadertrendthatunderscorestheinnovationincreatinghigh-qualitysmalllanguageandmultimodalreasoningmodels,andhowthey’repreparingAIforcommercialapplicationsandon-deviceinference.Thefactthatthesenewmodelscanrunondevicesacceleratesscaleandcreatesdemandforpowerfulchipsattheedge.
Drivingthisshiftarefourmajortrendsthatareleadingtoadramaticimprovementinthequality,performance,ande<iciencyofAImodelsthatcannowrunondevice:
?Today’sstate-of-the-artsmallerAImodelshavesuperiorperformance.NewtechniqueslikemodeldistillationandnovelAInetworkarchitecturessimplifythedevelopmentprocesswithoutsacri?cingquality,allowingnewmodelsto
outperformlargeronesfromayearago,whichcouldonlyoperateonthecloud.
?Modelsizesaredecreasingrapidly.State-of-the-artquantizationandpruning
techniquesallowdeveloperstoreducethesizeofmodelswithnomaterialimpactinaccuracy.
?Developershavemoretoworkwith.Therapidproliferationofhigh-qualityAI
modelsmeansfeaturesliketextsummarization,codingassistantsandlive
translationarecommonindeviceslikesmartphones,makingAIreadyfor
commercialapplicationsatscaleacrosstheedge.
?AIisbecomingthenewuserinterface.PersonalizedmultimodalAIagentswillsimplifyinteractionsandpro?cientlycompletetasksacrossvariousapplications.
QualcommTechnologiesisstrategicallypositionedtoleadandcapitalizeonthetransitionfromAItrainingtolarge-scaleinference,aswellastheexpansionofAIcomputational
processingfromthecloudtotheedge.Thecompanyhasanextensivetrackrecordin
developingcustomcentralprocessingunits(CPUs),neuralprocessingunits(NPUs),
graphicsprocessingunits(GPUs),andlow-powersubsystems.Thecompany’s
collaborationwithmodelmakers,alongwithtools,frameworks,andSDKsfordeployingmodelsacrossvariousedgedevicesegments,enablesdeveloperstoacceleratethe
adoptionofAIagentsandapplicationsattheedge.
TherecentdisruptionandreassessmentofhowAImodelsaretrainedvalidatesthe
imminentAIlandscapeshifttowardslarge-scaleinference.Itwillcreateanewcycleof
innovationandupgradeofinferencecomputingattheedge.Whiletrainingwillcontinueinthecloud,inferencewillbenefitfromthescaleofdevicesrunningonQualcomm?
technologyandcreatedemandformoreAI-enabledprocessorsattheedge.
4
QualityAImodelsarenowabundantanda9ordable
Innovationsboostmodelqualityandreducedevelopmenttimeandcost
AIhasreachedthepointwherethedropinthecostoftrainingAImodels,combinedwithopen-sourcecollaboration,ismakingthedevelopmentofhigh-qualitymodelsaccessibletomorepeopleandorganizations.
Thisshiftisdrivenbyvarioustechnicaladvancements.Usageoflongercontextlength,
alongwithsimplificationofsomeofthetrainingsteps,savescomputationalcosts.Newernetworkarchitecturesrangingfrommixture-of-experts(MoE)tostate-spacemodels(SSM)arepushingtheboundaryofwhatcanbeaccomplishedwithreducedcomputational
overheadandpowerconsumption.
NewerAImodelsalsointegrateadvancedmethodssuchaschain-of-thoughtreasoningandself-verification,enablingthemtoperformwellacrossvariouschallengingdomainslikemathematics,coding,andscientificreasoning.
Distillationisakeytechniqueinthedevelopmentofcapablesmallmodels.Itallowslargemodelsto"teach"smallermodels,transferringknowledgewhilemaintainingaccuracy.Theuseofdistillationhasledtoasurgeinsmallerfoundationmodels—manyofthemfine-
tunedforspecializedtasks.
Thepowerofdistillationisexemplifiedinfigure1.ThispresentsaverageLiveBenchresultscomparingtheLlama3.370BmodelwithitsdistilledDeepSeekR1counterpart.Thechartshowshowdistillationsignificantlyenhancesperformanceinreasoning,coding,and
mathematicstasksforthesamenumberofparameters.
5
Figure1:LiveBenchAIaveragebenchmarkresultscomparingMetaLlama70Bmodelwithitsdistilled
counterpartbyDeepSeek.Source:LiveBench.ai,Feb.2025.
Smallmodelsachievebigcapabilitiesattheedge
Smallermodelsareapproachingthequalityoflargefrontiermodelsduetodistillationandothertechniquesdescribedabove.Figure2showsbenchmarksfortheDeepSeekR1
distilledmodelscomparedtoleading-edgealternatives.DeepSeek-distilledversions
basedonQwenandLlamamodelsshowareasofsigni?cantsuperiority,particularlyintheGPQAbenchmark–achievingsuperiororsimilarscorescomparedtostate-of-the-art
modelssuchasGPT-4o,Claude3.5Sonnet,andGPT-o1mini.GPQAisacriticalmetricbecauseitinvolvesdeep,multi-stepreasoningtosolvecomplexqueries,whichmanymodels?ndchallenging.
6
Figure2:Mathematicandcodingbenchmarks.Source:DeepSeek,Jan.2025.
ManypopularmodelfamiliesincludingDeepSeekR1,MetaLlama,IBMGranite,Mistral
Ministralfeaturesmallvariantswhichoverdeliverintermsofperformanceand
benchmarksforspecifictasks,regardlessoftheirsize.Thereductionoflarge,foundationalmodelsintosmaller,efficientversionsenablesfasterinference,smallermemoryfootprintandlowerspowerconsumption–allwhilemaintainingahighbaronperformance,allowingdeploymentofsuchmodelswithindeviceslikesmartphones,PCs,andautomobiles.
Furtheroptimizations,likequantization,compressionandpruninghelpreducemodel
sizes.Quantizationlowerspowerconsumptionandspeedsupoperationsbyreducing
precisionwithoutsignificantlysacrificingaccuracy,whilepruningeliminatesunnecessaryparameters.
Thesetechnicaldevelopmentshaveledtoaproliferationofhigh-qualitygenerativeAI
models.AccordingtodatacompiledbyEpochAI(Figure3),morethan75%oflarge-scaleAImodelspublishedin2024featurelessthan100billionparameters.
7
Figure3:Numberoflarge-scaleAImodelspublishedbyyear,categorizedbynumberofparameters.Source:
EpochAI,Jan.2025.
TheeraofAIinferenceinnovationishere
Theabundanceofhigh-quality,smallermodelsisbringingrenewedattentiontoinferenceworkloads–whichiswhereapplicationsandservicesmakeuseofthemodelstoprovidevaluetobusinessesandconsumers.
QualcommTechnologieshasworkedontheoptimizationofnumerousAImodelsto
supportthecommercializationofthenewgenerationofAI-orientedCopilot+PCs.
Similarly,thecompanyhascollaboratedwithOEMssuchasSamsungandXiaomiinthelaunchof?agshipsmartphonesequippedwithmanyAI-enabledfeatures.
TheproliferationofAIinferencingcapabilitiesacrossdeviceshasenabledthecreationofgenerativeAIapplicationsandassistants.Documentsummarization,AI-imagegenerationandediting,andreal-timelanguagetranslationarenowcommonfeatures.CameraappsleverageAIforcomputationalphotography,objectrecognitionandreal-timescene
optimization.
Nextupisthedevelopmentofmultimodalapplicationswhichcombinemultipletypesofdata—text,vision,audioandsensorinput—todeliverricher,morecontext-awareand
personalizedexperiences.TheQualcommAIEnginecombinesthecapabilitiesofcustom-builtNPUs,CPUsandGPUstooptimizesuchtaskson-device,enablingAIassistantsto
switchbetweencommunicationmodesandgeneratemultimodaloutputs.
AgenticAIispositionedattheheartofthenextgenerationofuserinterfaces.AIsystems
8
arecapableofdecision-makingandtaskmanagementbypredictinguserneedsand
proactivelyexecutingcomplexworkflowswithindevicesandapplications.QualcommTechnologies’emphasisonefficient,real-timeAIprocessingallowstheseagentsto
functioncontinuouslyandsecurelywithinthedevices,whilerelyinguponapersonal
knowledgegraphthataccuratelyde?nestheuser’spreferencesandneeds,withoutanyclouddependency.Overtime,theseadvancementsarelayingthegroundworkforAItobecometheprimaryUI,withnaturallanguageandimage,videoandgesture-based
interactionssimplifyinghowpeopleengagewithtechnology.
Lookingahead,QualcommTechnologiesisalsopositionedfortheeraofembodiedAI,inwhichAIcapabilitiesareintegratedintorobotics.Byleveragingitsexpertiseininferenceoptimization,QualcommTechnologiesaimstopowerreal-timedecision-makingfor
robots,dronesandotherautonomousdevices,enablingpreciseinteractionsindynamic,real-worldenvironments.
WhilenumerousAImodelsaretrainedinthecloud,distilledsmallermodelsareavailableforoperationandrunondevicesoftenwithinweeksordays.Forexample,withinlessthanaweek,DeepSeekR1-distilledmodelswererunningon
PCs
and
smartphones
poweredbySnapdragon?platforms.
Deployinginferencewithindevicesaddressesimmediacythroughreducedlatency,
enhancesprivacy,reliesonlocaldatatoprovideadditionalcontextandenables
continuousfunctionalityofAIfeaturesandapplications.Italsoreducescostsforusersand/ordevelopersbyavoidingfeesassociatedwithcloudinferenceservices.AllofthiscreatesincentivesforsoftwareandserviceproviderstodeployAIinferenceattheedge.
QualcommissettobealeaderintheAIinferenceera
Asaleaderinon-deviceAI,QualcommTechnologiesisstrategicallypositionedtoadvancetheAIinferenceerawithitsindustry-leadinghardwareandsoftwaresolutionsforedge
devices.Thesesolutionsencompassbillionsofsmartphones,automobiles,XRheadsetsandglasses,PCs,industrialIoTdevices,andmore.
QualcommTechnologieshasalonghistoryofdevelopingcustomCPUs,NPUs,GPUsandlow-powersubsystems,which,whencombinedwithexpertiseinpackagingandthermal
design,formthefoundationofitsindustry-leadingsystem-on-chip(SoC)products.
TheseSoCsdeliverhigh-performance,energy-efficientAIinferencedirectlyon-device.Bytightlyintegratingthesecores,QualcommTechnologies’platformscanhandlecomplexAItaskswhilemaintainingbatterylifeandoverallpowerefficiency—criticalforedgeuse
cases.
TounlockthefullpotentialofAIonitsplatforms,QualcommTechnologieshasbuiltarobustAIsoftwarestackdesignedtoempowersoftwaredevelopers.TheQualcommAI
9
Stackincludeslibraries,SDKs,andoptimizationtoolsthatstreamlinemodeldeploymentandenhanceperformance.DeveloperscanleveragetheseresourcestoefficientlyadaptmodelsforQualcommplatforms,reducingtime-to-marketforAI-poweredapplications.QualcommTechnologies’developer-focusedapproachacceleratesinnovationby
simplifyingtheintegrationofcutting-edgeAIfeaturesintoconsumerandenterpriseproducts.
Lastly,thecompany’scollaborationwithAImodelmakersacrosstheglobeandits
provisionofservicesliketheQualcommAIHubarecentraltoitsstrategyforscalingAI
acrossindustries.OntheQualcommAIHub,inthreesimplesteps,adevelopercan1)pickamodelorbringtheirownmodelorcreateamodelbasedontheirdata;2)pickany
frameworkandruntime,writeandtesttheirAIappsonacloud-basedphysicaldevice
farm;and3)usetoolstodeploytheirappscommercially.TheQualcommAIHubsupportsmajorlargelanguageandmultimodalmodel(LLM,LMM)families,allowingdeveloperstodeploy,optimize,andmanageinferenceondevicespoweredbyQualcommplatforms.
Withfeatureslikepre-optimizedmodellibrariesandsupportforcustommodel
optimizationandintegration,QualcommTechnologiesenablesrapiddevelopmentcycleswhileenhancingcompatibilitywithdiverseAIecosystems.Thiscollaborativeapproach
strengthensQualcommTechnologies’positionasaleaderinenablingscalable,real-timeAIapplications.
Expandingacrossallkeyedgesegments
QualcommTechnologiesuseson-deviceAItosupportmanyindustries,unlocking
businessvalueandsupportingnewuserexperiences,allenabledbyenhanced
performance,efficiency,responsivenessandprivacybyprocessingAIlocallyondevices.
Mobile
Snapdragonmobileplatforms,suchasthelatestSnapdragon8elite,areadvancingthe
capabilitiesofon-deviceAIbyenablingseveralcutting-edgemultimodalgenerativemodelsandagenticAItooperatenativelyonsmartphones.AIhasenhancedsmartphonefeaturesacrossvariouscategoriessuchascommunicationimprovement,generativeimageeditingtools,personalization,andaccessibility.On-devicegenerativeAIisbeingutilizedto
developmoreintuitive,user-centricfeaturesandtoautomatetasksinmobiledevices.
ThistrendtowardsAI-drivenfunctionalitiesisevidentinthelatest?agshipsmartphonereleasesfrommajormanufacturersutilizingSnapdragonplatforms,includingSamsung,ASUS,Xiaomi,Oppo,Vivo,andHonor.
10
PCs
SnapdragonXSeriesplatformswereinstrumentalindefiningthenewcategoryofAIPCs,
withbest-in-classcustomNPUcoresthatwerebuiltfromground-upforhighperformance,energyefficientgenerativeAIinference.ThisNPUisturbo-chargingWindowsapps,addingnewfeatures,boostingperformance,andenhancingprivacyandbatterylife.Developers
canrungenerativeAIinferenceon-device,offeringcutting-edgeCopilot+PCfeatureswhichdebutedontheSnapdragonXSeries.
Popularthird-partyappslikeZoom,Affinity,DjayPro,CapCut,MoisesLive,and
BlackmagicDesign’sDaVinciResolvetakeadvantageoftheNPUtoofferspecificAI-poweredcapabilitiesonSnapdragonXSeriesplatforms.
Automotive
Snapdragon?DigitalChassis?solutionuseson-deviceAIinitscontext-awareintelligentcockpitsystemdesignedtoenhancevehiclesafetyanddriverexperience.Thissystem
leveragesadvancedcameras,biometricandenvironmentalsensors,andstate-of-the-artmultimodalAInetworkstoprovidereal-timefeedbackandfunctionalitytailoredtothe
driver'sstateandenvironmentalconditions.
Forautomateddrivingandassistancesystems,QualcommTechnologieshasdevelopedanend-to-endarchitecturewhichuseslargetrainingdatasets,fastre-trainingusingreal-worldandAI-augmenteddata,over-the-airupdates,andastate-of-the-artstackincludingmultimodalAImodelsandcausalreasoninginthevehicletohandlemodernautomated
drivingandassistancecomplexities.
Example:LLMAgentlistenstheconversationsinthecabin,onepassengermentionscoffee,
afterafewminsPOIshowsacoffeehouse,LLMAgentproposesastopforcoffee)
Perception-to-IVI
LLMAgent
(AIAssistant)
EnhancedARHUD
Perception
In-VehicleSensors
IntuitiveHMI
Driving
MultimodalLLM
DeepPoints,POI
PlanningProposals&DriverStatus
HumanDriver
Effectivesceneunderstandingandcognition
Decision
ADAS
ADSensors
Transformer
Tokenized
Environment
EnvironmentTokenization
Improvedspatialreasoningandreal-timeplanningcapabilities
Perception-to-ADAS
11
Figure4:Simplifiedin-vehicleAIsystemarchitecturetosupportintelligentcockpitandautonomousand
advanceddrivingassistance.Source:QualcommTechnologies,Jan.2025,
IndustrialIoT
ForindustrialIoTandenterpriseapplications,QualcommTechnologiesrecently
introduceditstheQualcomm?AIOn-PremApplianceSolution,anon-premisesdesktoporwall-mountedhardwaresolution,andQualcomm?AIInferenceSuite,asetofsoftwareandservicesforAIinferencingspanningfromnear-edgetocloud.
ThisedgeAIapproachallowssensitivecustomerdata,fine-tunedmodels,andinference
loadstoremainonpremises,enhancingprivacy,control,energyefficiency,andlow
latency.That’scriticalforAI-enabledbusinessapplicationssuchasintelligentmulti-
lingualsearch,customAIassistantsandagents,codegeneration,andcomputervisionforsecurity,safetyandsitemonitoring.
Networking
QualcommTechnologieshasintroducedanAI-enabledWi-Finetworkingplatform–the
Qualcomm?NetworkingProA7Elite.ThesolutionintegratesWi-Fi7andedgeAItoallow
accesspointsandrouterstorungenerativeAIinferenceonbehalfofconnecteddevicesinthenetwork.Itsupportsinnovativeapplicationsinareaslikesecurity,energymanagement,virtualassistants,andhealthmonitoringbyprocessingdataonthegatewayforenhancedprivacyandrea
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/SHPTA 088-2024膠帶與標簽用高性能熱熔膠粘劑
- T/CHTS 10163-2024公路橋梁結構監(jiān)測系統(tǒng)施工質(zhì)量檢驗與評定標準
- 舞臺租賃協(xié)議模板與舞臺設備租賃合同3篇
- 上海安全監(jiān)理試題及答案
- T/CCOA 68-2023食用植物油中揮發(fā)性風味成分測定頂空固相微萃取-氣相色譜-質(zhì)譜聯(lián)用法
- 2025年茶葉供貨合同范文2篇
- 小區(qū)幼稚園轉讓合同8篇
- 聘用外國專家協(xié)議書參考6篇
- 高值耗材備貨協(xié)議書4篇
- 濕式靜電除塵器項目績效評估報告
- 伏電站項目技術標(投標文件)
- 道路貨物運輸安全事故報告、統(tǒng)計與處理制度
- 管道公稱直徑壁厚對照表
- 第四講 林分調(diào)查因子
- 幼兒園繪本故事:《神魚馱屈原》 PPT課件
- 超星爾雅學習通《藝術鑒賞》章節(jié)測試含答案
- 《電機定子、轉子沖片和鐵芯》團體標準(征求意見稿)
- 太原市普通高中學生學籍簿(準確打印)
- 食品經(jīng)營設施空間布局圖
- 工會行政性資產(chǎn)管理暫行辦法
- 預制箱梁運輸及安裝質(zhì)量保證體系及措施
評論
0/150
提交評論