【高通Qualcomm】2025AI變革正在推動終端側推理創(chuàng)新研究報告_第1頁
【高通Qualcomm】2025AI變革正在推動終端側推理創(chuàng)新研究報告_第2頁
【高通Qualcomm】2025AI變革正在推動終端側推理創(chuàng)新研究報告_第3頁
【高通Qualcomm】2025AI變革正在推動終端側推理創(chuàng)新研究報告_第4頁
【高通Qualcomm】2025AI變革正在推動終端側推理創(chuàng)新研究報告_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

AIdisruptionis

drivinginnovationinon-deviceinference

HowtheproliferationandevolutionofgenerativemodelswilltransformtheAIlandscapeandunlockvalue.

February2025

SnapdragonandQualcommbrandedproductsareproductsofQualcommTechnologies,Inc.and/oritssubsidiaries.

2

Contents

Executivesummary 3

QualityAImodelsarenowabundantanda<ordable 4

Innovationsboostmodelqualityandreducedevelopmenttimeandcost 4

Smallmodelsachievebigcapabilitiesattheedge 5

TheeraofAIinferenceinnovationishere 7

QualcommissettobealeaderintheAIinferenceera 8

Expandingacrossallkeyedgesegments 9

Mobile 9

PCs 10

Automotive 10

IndustrialIoT 11

Networking 11

Conclusion 11

3

Executivesummary

TheintroductionofDeepSeekR1,acutting-edgereasoningAImodel,hascausedripplesthroughoutthetechindustry.That’sbecauseitsperformanceisonparwithorbetterthanstate-of-the-artalternatives,disruptingtheconventionalwisdomaroundAIdevelopment.

Thispivotalmomentispartofabroadertrendthatunderscorestheinnovationincreatinghigh-qualitysmalllanguageandmultimodalreasoningmodels,andhowthey’repreparingAIforcommercialapplicationsandon-deviceinference.Thefactthatthesenewmodelscanrunondevicesacceleratesscaleandcreatesdemandforpowerfulchipsattheedge.

Drivingthisshiftarefourmajortrendsthatareleadingtoadramaticimprovementinthequality,performance,ande<iciencyofAImodelsthatcannowrunondevice:

?Today’sstate-of-the-artsmallerAImodelshavesuperiorperformance.NewtechniqueslikemodeldistillationandnovelAInetworkarchitecturessimplifythedevelopmentprocesswithoutsacri?cingquality,allowingnewmodelsto

outperformlargeronesfromayearago,whichcouldonlyoperateonthecloud.

?Modelsizesaredecreasingrapidly.State-of-the-artquantizationandpruning

techniquesallowdeveloperstoreducethesizeofmodelswithnomaterialimpactinaccuracy.

?Developershavemoretoworkwith.Therapidproliferationofhigh-qualityAI

modelsmeansfeaturesliketextsummarization,codingassistantsandlive

translationarecommonindeviceslikesmartphones,makingAIreadyfor

commercialapplicationsatscaleacrosstheedge.

?AIisbecomingthenewuserinterface.PersonalizedmultimodalAIagentswillsimplifyinteractionsandpro?cientlycompletetasksacrossvariousapplications.

QualcommTechnologiesisstrategicallypositionedtoleadandcapitalizeonthetransitionfromAItrainingtolarge-scaleinference,aswellastheexpansionofAIcomputational

processingfromthecloudtotheedge.Thecompanyhasanextensivetrackrecordin

developingcustomcentralprocessingunits(CPUs),neuralprocessingunits(NPUs),

graphicsprocessingunits(GPUs),andlow-powersubsystems.Thecompany’s

collaborationwithmodelmakers,alongwithtools,frameworks,andSDKsfordeployingmodelsacrossvariousedgedevicesegments,enablesdeveloperstoacceleratethe

adoptionofAIagentsandapplicationsattheedge.

TherecentdisruptionandreassessmentofhowAImodelsaretrainedvalidatesthe

imminentAIlandscapeshifttowardslarge-scaleinference.Itwillcreateanewcycleof

innovationandupgradeofinferencecomputingattheedge.Whiletrainingwillcontinueinthecloud,inferencewillbenefitfromthescaleofdevicesrunningonQualcomm?

technologyandcreatedemandformoreAI-enabledprocessorsattheedge.

4

QualityAImodelsarenowabundantanda9ordable

Innovationsboostmodelqualityandreducedevelopmenttimeandcost

AIhasreachedthepointwherethedropinthecostoftrainingAImodels,combinedwithopen-sourcecollaboration,ismakingthedevelopmentofhigh-qualitymodelsaccessibletomorepeopleandorganizations.

Thisshiftisdrivenbyvarioustechnicaladvancements.Usageoflongercontextlength,

alongwithsimplificationofsomeofthetrainingsteps,savescomputationalcosts.Newernetworkarchitecturesrangingfrommixture-of-experts(MoE)tostate-spacemodels(SSM)arepushingtheboundaryofwhatcanbeaccomplishedwithreducedcomputational

overheadandpowerconsumption.

NewerAImodelsalsointegrateadvancedmethodssuchaschain-of-thoughtreasoningandself-verification,enablingthemtoperformwellacrossvariouschallengingdomainslikemathematics,coding,andscientificreasoning.

Distillationisakeytechniqueinthedevelopmentofcapablesmallmodels.Itallowslargemodelsto"teach"smallermodels,transferringknowledgewhilemaintainingaccuracy.Theuseofdistillationhasledtoasurgeinsmallerfoundationmodels—manyofthemfine-

tunedforspecializedtasks.

Thepowerofdistillationisexemplifiedinfigure1.ThispresentsaverageLiveBenchresultscomparingtheLlama3.370BmodelwithitsdistilledDeepSeekR1counterpart.Thechartshowshowdistillationsignificantlyenhancesperformanceinreasoning,coding,and

mathematicstasksforthesamenumberofparameters.

5

Figure1:LiveBenchAIaveragebenchmarkresultscomparingMetaLlama70Bmodelwithitsdistilled

counterpartbyDeepSeek.Source:LiveBench.ai,Feb.2025.

Smallmodelsachievebigcapabilitiesattheedge

Smallermodelsareapproachingthequalityoflargefrontiermodelsduetodistillationandothertechniquesdescribedabove.Figure2showsbenchmarksfortheDeepSeekR1

distilledmodelscomparedtoleading-edgealternatives.DeepSeek-distilledversions

basedonQwenandLlamamodelsshowareasofsigni?cantsuperiority,particularlyintheGPQAbenchmark–achievingsuperiororsimilarscorescomparedtostate-of-the-art

modelssuchasGPT-4o,Claude3.5Sonnet,andGPT-o1mini.GPQAisacriticalmetricbecauseitinvolvesdeep,multi-stepreasoningtosolvecomplexqueries,whichmanymodels?ndchallenging.

6

Figure2:Mathematicandcodingbenchmarks.Source:DeepSeek,Jan.2025.

ManypopularmodelfamiliesincludingDeepSeekR1,MetaLlama,IBMGranite,Mistral

Ministralfeaturesmallvariantswhichoverdeliverintermsofperformanceand

benchmarksforspecifictasks,regardlessoftheirsize.Thereductionoflarge,foundationalmodelsintosmaller,efficientversionsenablesfasterinference,smallermemoryfootprintandlowerspowerconsumption–allwhilemaintainingahighbaronperformance,allowingdeploymentofsuchmodelswithindeviceslikesmartphones,PCs,andautomobiles.

Furtheroptimizations,likequantization,compressionandpruninghelpreducemodel

sizes.Quantizationlowerspowerconsumptionandspeedsupoperationsbyreducing

precisionwithoutsignificantlysacrificingaccuracy,whilepruningeliminatesunnecessaryparameters.

Thesetechnicaldevelopmentshaveledtoaproliferationofhigh-qualitygenerativeAI

models.AccordingtodatacompiledbyEpochAI(Figure3),morethan75%oflarge-scaleAImodelspublishedin2024featurelessthan100billionparameters.

7

Figure3:Numberoflarge-scaleAImodelspublishedbyyear,categorizedbynumberofparameters.Source:

EpochAI,Jan.2025.

TheeraofAIinferenceinnovationishere

Theabundanceofhigh-quality,smallermodelsisbringingrenewedattentiontoinferenceworkloads–whichiswhereapplicationsandservicesmakeuseofthemodelstoprovidevaluetobusinessesandconsumers.

QualcommTechnologieshasworkedontheoptimizationofnumerousAImodelsto

supportthecommercializationofthenewgenerationofAI-orientedCopilot+PCs.

Similarly,thecompanyhascollaboratedwithOEMssuchasSamsungandXiaomiinthelaunchof?agshipsmartphonesequippedwithmanyAI-enabledfeatures.

TheproliferationofAIinferencingcapabilitiesacrossdeviceshasenabledthecreationofgenerativeAIapplicationsandassistants.Documentsummarization,AI-imagegenerationandediting,andreal-timelanguagetranslationarenowcommonfeatures.CameraappsleverageAIforcomputationalphotography,objectrecognitionandreal-timescene

optimization.

Nextupisthedevelopmentofmultimodalapplicationswhichcombinemultipletypesofdata—text,vision,audioandsensorinput—todeliverricher,morecontext-awareand

personalizedexperiences.TheQualcommAIEnginecombinesthecapabilitiesofcustom-builtNPUs,CPUsandGPUstooptimizesuchtaskson-device,enablingAIassistantsto

switchbetweencommunicationmodesandgeneratemultimodaloutputs.

AgenticAIispositionedattheheartofthenextgenerationofuserinterfaces.AIsystems

8

arecapableofdecision-makingandtaskmanagementbypredictinguserneedsand

proactivelyexecutingcomplexworkflowswithindevicesandapplications.QualcommTechnologies’emphasisonefficient,real-timeAIprocessingallowstheseagentsto

functioncontinuouslyandsecurelywithinthedevices,whilerelyinguponapersonal

knowledgegraphthataccuratelyde?nestheuser’spreferencesandneeds,withoutanyclouddependency.Overtime,theseadvancementsarelayingthegroundworkforAItobecometheprimaryUI,withnaturallanguageandimage,videoandgesture-based

interactionssimplifyinghowpeopleengagewithtechnology.

Lookingahead,QualcommTechnologiesisalsopositionedfortheeraofembodiedAI,inwhichAIcapabilitiesareintegratedintorobotics.Byleveragingitsexpertiseininferenceoptimization,QualcommTechnologiesaimstopowerreal-timedecision-makingfor

robots,dronesandotherautonomousdevices,enablingpreciseinteractionsindynamic,real-worldenvironments.

WhilenumerousAImodelsaretrainedinthecloud,distilledsmallermodelsareavailableforoperationandrunondevicesoftenwithinweeksordays.Forexample,withinlessthanaweek,DeepSeekR1-distilledmodelswererunningon

PCs

and

smartphones

poweredbySnapdragon?platforms.

Deployinginferencewithindevicesaddressesimmediacythroughreducedlatency,

enhancesprivacy,reliesonlocaldatatoprovideadditionalcontextandenables

continuousfunctionalityofAIfeaturesandapplications.Italsoreducescostsforusersand/ordevelopersbyavoidingfeesassociatedwithcloudinferenceservices.AllofthiscreatesincentivesforsoftwareandserviceproviderstodeployAIinferenceattheedge.

QualcommissettobealeaderintheAIinferenceera

Asaleaderinon-deviceAI,QualcommTechnologiesisstrategicallypositionedtoadvancetheAIinferenceerawithitsindustry-leadinghardwareandsoftwaresolutionsforedge

devices.Thesesolutionsencompassbillionsofsmartphones,automobiles,XRheadsetsandglasses,PCs,industrialIoTdevices,andmore.

QualcommTechnologieshasalonghistoryofdevelopingcustomCPUs,NPUs,GPUsandlow-powersubsystems,which,whencombinedwithexpertiseinpackagingandthermal

design,formthefoundationofitsindustry-leadingsystem-on-chip(SoC)products.

TheseSoCsdeliverhigh-performance,energy-efficientAIinferencedirectlyon-device.Bytightlyintegratingthesecores,QualcommTechnologies’platformscanhandlecomplexAItaskswhilemaintainingbatterylifeandoverallpowerefficiency—criticalforedgeuse

cases.

TounlockthefullpotentialofAIonitsplatforms,QualcommTechnologieshasbuiltarobustAIsoftwarestackdesignedtoempowersoftwaredevelopers.TheQualcommAI

9

Stackincludeslibraries,SDKs,andoptimizationtoolsthatstreamlinemodeldeploymentandenhanceperformance.DeveloperscanleveragetheseresourcestoefficientlyadaptmodelsforQualcommplatforms,reducingtime-to-marketforAI-poweredapplications.QualcommTechnologies’developer-focusedapproachacceleratesinnovationby

simplifyingtheintegrationofcutting-edgeAIfeaturesintoconsumerandenterpriseproducts.

Lastly,thecompany’scollaborationwithAImodelmakersacrosstheglobeandits

provisionofservicesliketheQualcommAIHubarecentraltoitsstrategyforscalingAI

acrossindustries.OntheQualcommAIHub,inthreesimplesteps,adevelopercan1)pickamodelorbringtheirownmodelorcreateamodelbasedontheirdata;2)pickany

frameworkandruntime,writeandtesttheirAIappsonacloud-basedphysicaldevice

farm;and3)usetoolstodeploytheirappscommercially.TheQualcommAIHubsupportsmajorlargelanguageandmultimodalmodel(LLM,LMM)families,allowingdeveloperstodeploy,optimize,andmanageinferenceondevicespoweredbyQualcommplatforms.

Withfeatureslikepre-optimizedmodellibrariesandsupportforcustommodel

optimizationandintegration,QualcommTechnologiesenablesrapiddevelopmentcycleswhileenhancingcompatibilitywithdiverseAIecosystems.Thiscollaborativeapproach

strengthensQualcommTechnologies’positionasaleaderinenablingscalable,real-timeAIapplications.

Expandingacrossallkeyedgesegments

QualcommTechnologiesuseson-deviceAItosupportmanyindustries,unlocking

businessvalueandsupportingnewuserexperiences,allenabledbyenhanced

performance,efficiency,responsivenessandprivacybyprocessingAIlocallyondevices.

Mobile

Snapdragonmobileplatforms,suchasthelatestSnapdragon8elite,areadvancingthe

capabilitiesofon-deviceAIbyenablingseveralcutting-edgemultimodalgenerativemodelsandagenticAItooperatenativelyonsmartphones.AIhasenhancedsmartphonefeaturesacrossvariouscategoriessuchascommunicationimprovement,generativeimageeditingtools,personalization,andaccessibility.On-devicegenerativeAIisbeingutilizedto

developmoreintuitive,user-centricfeaturesandtoautomatetasksinmobiledevices.

ThistrendtowardsAI-drivenfunctionalitiesisevidentinthelatest?agshipsmartphonereleasesfrommajormanufacturersutilizingSnapdragonplatforms,includingSamsung,ASUS,Xiaomi,Oppo,Vivo,andHonor.

10

PCs

SnapdragonXSeriesplatformswereinstrumentalindefiningthenewcategoryofAIPCs,

withbest-in-classcustomNPUcoresthatwerebuiltfromground-upforhighperformance,energyefficientgenerativeAIinference.ThisNPUisturbo-chargingWindowsapps,addingnewfeatures,boostingperformance,andenhancingprivacyandbatterylife.Developers

canrungenerativeAIinferenceon-device,offeringcutting-edgeCopilot+PCfeatureswhichdebutedontheSnapdragonXSeries.

Popularthird-partyappslikeZoom,Affinity,DjayPro,CapCut,MoisesLive,and

BlackmagicDesign’sDaVinciResolvetakeadvantageoftheNPUtoofferspecificAI-poweredcapabilitiesonSnapdragonXSeriesplatforms.

Automotive

Snapdragon?DigitalChassis?solutionuseson-deviceAIinitscontext-awareintelligentcockpitsystemdesignedtoenhancevehiclesafetyanddriverexperience.Thissystem

leveragesadvancedcameras,biometricandenvironmentalsensors,andstate-of-the-artmultimodalAInetworkstoprovidereal-timefeedbackandfunctionalitytailoredtothe

driver'sstateandenvironmentalconditions.

Forautomateddrivingandassistancesystems,QualcommTechnologieshasdevelopedanend-to-endarchitecturewhichuseslargetrainingdatasets,fastre-trainingusingreal-worldandAI-augmenteddata,over-the-airupdates,andastate-of-the-artstackincludingmultimodalAImodelsandcausalreasoninginthevehicletohandlemodernautomated

drivingandassistancecomplexities.

Example:LLMAgentlistenstheconversationsinthecabin,onepassengermentionscoffee,

afterafewminsPOIshowsacoffeehouse,LLMAgentproposesastopforcoffee)

Perception-to-IVI

LLMAgent

(AIAssistant)

EnhancedARHUD

Perception

In-VehicleSensors

IntuitiveHMI

Driving

MultimodalLLM

DeepPoints,POI

PlanningProposals&DriverStatus

HumanDriver

Effectivesceneunderstandingandcognition

Decision

ADAS

ADSensors

Transformer

Tokenized

Environment

EnvironmentTokenization

Improvedspatialreasoningandreal-timeplanningcapabilities

Perception-to-ADAS

11

Figure4:Simplifiedin-vehicleAIsystemarchitecturetosupportintelligentcockpitandautonomousand

advanceddrivingassistance.Source:QualcommTechnologies,Jan.2025,

IndustrialIoT

ForindustrialIoTandenterpriseapplications,QualcommTechnologiesrecently

introduceditstheQualcomm?AIOn-PremApplianceSolution,anon-premisesdesktoporwall-mountedhardwaresolution,andQualcomm?AIInferenceSuite,asetofsoftwareandservicesforAIinferencingspanningfromnear-edgetocloud.

ThisedgeAIapproachallowssensitivecustomerdata,fine-tunedmodels,andinference

loadstoremainonpremises,enhancingprivacy,control,energyefficiency,andlow

latency.That’scriticalforAI-enabledbusinessapplicationssuchasintelligentmulti-

lingualsearch,customAIassistantsandagents,codegeneration,andcomputervisionforsecurity,safetyandsitemonitoring.

Networking

QualcommTechnologieshasintroducedanAI-enabledWi-Finetworkingplatform–the

Qualcomm?NetworkingProA7Elite.ThesolutionintegratesWi-Fi7andedgeAItoallow

accesspointsandrouterstorungenerativeAIinferenceonbehalfofconnecteddevicesinthenetwork.Itsupportsinnovativeapplicationsinareaslikesecurity,energymanagement,virtualassistants,andhealthmonitoringbyprocessingdataonthegatewayforenhancedprivacyandrea

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論