




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省文山州硯山縣一中2025年高三年級5月統測模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右焦點分別為,,P是雙曲線E上的一點,且.若直線與雙曲線E的漸近線交于點M,且M為的中點,則雙曲線E的漸近線方程為()A. B. C. D.2.設,是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.3.已知函數,若對任意,都有成立,則實數的取值范圍是()A. B. C. D.4.復數(為虛數單位),則的共軛復數在復平面上對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限5.下列函數中,在區間上為減函數的是()A. B. C. D.6.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.7.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.8.復數的共軛復數為()A. B. C. D.9.設M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.10.若樣本的平均數是10,方差為2,則對于樣本,下列結論正確的是()A.平均數為20,方差為4 B.平均數為11,方差為4C.平均數為21,方差為8 D.平均數為20,方差為811.據國家統計局發布的數據,2019年11月全國CPI(居民消費價格指數),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權重,根據該圖,下列結論錯誤的是()A.CPI一籃子商品中所占權重最大的是居住B.CPI一籃子商品中吃穿住所占權重超過50%C.豬肉在CPI一籃子商品中所占權重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為0.18%12.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數在區間上的值域為______.14.已知集合,,則__________.15.已知,若,則________.16.平行四邊形中,,為邊上一點(不與重合),將平行四邊形沿折起,使五點均在一個球面上,當四棱錐體積最大時,球的表面積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,過的直線與橢圓相交于兩點,且與軸相交于點.(1)若,求直線的方程;(2)設關于軸的對稱點為,證明:直線過軸上的定點.18.(12分)在平面直角坐標系中,已知直線的參數方程為(為參數)和曲線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)在極坐標系中,已知點是射線與直線的公共點,點是與曲線的公共點,求的最大值.19.(12分)已知,.(1)求函數的單調遞增區間;(2)的三個內角、、所對邊分別為、、,若且,求面積的取值范圍.20.(12分)已知函數,,若存在實數使成立,求實數的取值范圍.21.(12分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點B落在矩形的邊上,記該點為E,且折痕的兩端點M,N分別在邊上.設,的面積為S.(1)將l表示成θ的函數,并確定θ的取值范圍;(2)求l的最小值及此時的值;(3)問當θ為何值時,的面積S取得最小值?并求出這個最小值.22.(10分)已知函數.(1)解不等式;(2)若函數最小值為,且,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關系,從而得到漸近線的斜率.【詳解】根據題意,點P一定在左支上.由及,得,,再結合M為的中點,得,又因為OM是的中位線,又,且,從而直線與雙曲線的左支只有一個交點.在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點三角形等知識,是一道中檔題.2.B【解析】
設過點作的垂線,其方程為,聯立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關系等基礎知識,考查運算求解、推理論證能力,屬于中檔題.3.D【解析】
先將所求問題轉化為對任意恒成立,即得圖象恒在函數圖象的上方,再利用數形結合即可解決.【詳解】由得,由題意函數得圖象恒在函數圖象的上方,作出函數的圖象如圖所示過原點作函數的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數在不等式恒成立中的應用,考查了學生轉化與化歸思想以及數形結合的思想,是一道中檔題.4.C【解析】
由復數除法求出,寫出共軛復數,寫出共軛復數對應點坐標即得【詳解】解析:,,對應點為,在第三象限.故選:C.【點睛】本題考查復數的除法運算,共軛復數的概念,復數的幾何意義.掌握復數除法法則是解題關鍵.5.C【解析】
利用基本初等函數的單調性判斷各選項中函數在區間上的單調性,進而可得出結果.【詳解】對于A選項,函數在區間上為增函數;對于B選項,函數在區間上為增函數;對于C選項,函數在區間上為減函數;對于D選項,函數在區間上為增函數.故選:C.【點睛】本題考查函數在區間上單調性的判斷,熟悉一些常見的基本初等函數的單調性是判斷的關鍵,屬于基礎題.6.D【解析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設,則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質,離心率的求法,考查了轉化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).7.B【解析】
根據角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【詳解】因為終邊上有一點,所以,故選:B【點睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.8.D【解析】
直接相乘,得,由共軛復數的性質即可得結果【詳解】∵∴其共軛復數為.故選:D【點睛】熟悉復數的四則運算以及共軛復數的性質.9.B【解析】
設,通過,再利用向量的加減運算可得,結合條件即可得解.【詳解】設,則有.又,所以,有.故選B.【點睛】本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.10.D【解析】
由兩組數據間的關系,可判斷二者平均數的關系,方差的關系,進而可得到答案.【詳解】樣本的平均數是10,方差為2,所以樣本的平均數為,方差為.故選:D.【點睛】樣本的平均數是,方差為,則的平均數為,方差為.11.D【解析】
A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統計圖的識別與應用,還考查了理解辨析的能力,屬于基礎題.12.A【解析】
作出其直觀圖,然后結合數據根據勾股定定理計算每一條棱長即可.【詳解】根據三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點睛】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由二倍角公式降冪,再由兩角和的正弦公式化函數為一個角的一個三角函數形式,結合正弦函數性質可求得值域.【詳解】,,則,.故答案為:.【點睛】本題考查三角恒等變換(二倍角公式、兩角和的正弦公式),考查正弦函數的的單調性和最值.求解三角函數的性質的性質一般都需要用三角恒等變換化函數為一個角的一個三角函數形式,然后結合正弦函數的性質得出結論.14.【解析】
解一元二次不等式化簡集合,再進行集合的交運算,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查一元二次不等式的求解、集合的交運算,考查運算求解能力,屬于基礎題.15.1【解析】
由題意先求得的值,可得,再令,可得結論.【詳解】已知,,,,令,可得,故答案為:1.【點睛】本題主要考查二項式定理的應用,注意根據題意,分析所給代數式的特點,通過給二項式的賦值,求展開式的系數和,可以簡便的求出答案,屬于基礎題.16.【解析】
依題意可得、、、四點共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當且僅當面面時體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、、、四點共圓,所以因為,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當面面時,取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【點睛】本題考查多面體的外接球的相關計算,正弦定理、余弦定理的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)或;(2)見解析【解析】
(1)由已知條件利用點斜式設出直線的方程,則可表示出點的坐標,再由的關系表示出點的坐標,而點在橢圓上,將其坐標代入橢圓方程中可求出直線的斜率;(2)設出兩點的坐標,則點的坐標可以表示出,然后直線的方程與橢圓方程聯立成方程,消元后得到關于的一元二次方程,再利用根與系數的關系,再結合直線的方程,化簡可得結果.【詳解】(1)由條件可知直線的斜率存在,則可設直線的方程為,則,由,有,所以,由在橢圓上,則,解得,此時在橢圓內部,所以滿足直線與橢圓相交,故所求直線方程為或.(也可聯立直線與橢圓方程,由驗證)(2)設,則,直線的方程為.由得,由,解得,,當時,,故直線恒過定點.【點睛】此題考查的是直線與橢圓的位置關系中的過定點問題,計算過程較復雜,屬于難題.18.(1),;(2)【解析】
(1)先將直線l和圓C的參數方程化成普通方程,再分別求出極坐標方程;(2)寫出點M和點N的極坐標,根據極徑的定義分別表示出和,利用三角函數的性質求出的最大值.【詳解】解:(1),,即極坐標方程為,,極坐標方程.(2)由題可知,,當時,.【點睛】本題考查了參數方程、普通方程和極坐標方程的互化問題,極徑的定義,以及三角函數的恒等變換,屬于中檔題.19.(1);(2).【解析】
(1)利用三角恒等變換思想化簡函數的解析式為,然后解不等式,可求得函數的單調遞增區間;(2)由求得,利用余弦定理結合基本不等式求出的取值范圍,再結合三角形的面積公式可求得面積的取值范圍.【詳解】(1),解不等式,解得.因此,函數的單調遞增區間為;(2)由題意,則,,,,解得.由余弦定理得,又,,當且僅當時取等號,所以,的面積.【點睛】本題考查正弦型函數單調區間的求解,同時也考查了三角形面積取值范圍的計算,涉及余弦定理和基本不等式的應用,考查計算能力,屬于中等題.20.【解析】試題分析:先將問題“存在實數使成立”轉化為“求函數的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實數使成立,等價于的最大值大于,因為,由柯西不等式:,所以,當且僅當時取“”,故常數的取值范圍是.考點:柯西不等式即運用和轉化與化歸的數學思想的運用.21.(1)(2),的最小值為.(3)時,面積取最小值為【解析】
(1),利用三角函數定義分別表示,且,即可得到關于的解析式;,,則,即可得到的范圍;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,設為,令,則,即可設,利用導函數判斷函數的單調性,即可求得的最大值,進而求解;(3)由題,,則,設,,利用導函數求得的最大值,即可求得的最小值.【詳解】解:(1),故.因為,所以,,所以,又,,則,所以,所以(2)記,則,設,,則,記,則,令,則,當時,;當時,,所以在上單調遞增,在上單調遞減,故當時取最小值,此時,的最小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆山西省部分學校高三下學期4月模擬考試(省二模)政治試題(含答案)
- 河北旅游職業學院《數字游戲創作》2023-2024學年第二學期期末試卷
- 江西省南昌市教研室2025屆高三下學期開學考物理試題含解析
- 河北省滁州市衡水中學2024-2025學年高三第三次質量預測化學試題試卷含解析
- 鄭州輕工業大學《體育健美操》2023-2024學年第二學期期末試卷
- 上海市閔行區文萊中學2024-2025學年初三中考模擬沖刺卷(提優卷)(三)英語試題文試題含答案
- 江西省宜春市樟樹市2024-2025學年小升初數學高頻考點模擬卷含解析
- 河南臨潁新時代實驗校2025屆初三最后一卷語文試題含解析
- 湖南省株洲市第十八中學2024-2025學年高三下學期期末考試英語試題理試題(A卷)含解析
- 上海市松江區松江二中2024-2025學年高三下學期學前考試數學試題文試題含解析
- 餐飲商戶安全培訓
- 學前教育基礎知識課件 主題3 學前兒童全面發展教育
- 小學數學跨學科主題學習的系統設計與實施
- 2025中考化學詳細知識點
- 2025陜煤集團榆林化學限責任公司招聘596人高頻重點模擬試卷提升(共500題附帶答案詳解)
- DB23-T 3919-2024 大跨鋼結構技術標準
- 2025河南中煙許昌卷煙廠招聘10人易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年中國國新基金管理有限公司招聘筆試參考題庫含答案解析
- 2025年福建泉州發展集團有限公司招聘筆試參考題庫含答案解析
- CNAS-TRL-022:2023《實驗室風險管理指南》
- 第19課 資本主義國家的新變化 說課稿-2024-2025學年高一統編版2019必修中外歷史綱要下冊
評論
0/150
提交評論