




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市松江區松江二中2024-2025學年高三下學期學前考試數學試題文試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.2.定義:表示不等式的解集中的整數解之和.若,,,則實數的取值范圍是A. B. C. D.3.設是虛數單位,,,則()A. B. C.1 D.24.某中學2019年的高考考生人數是2016年高考考生人數的1.2倍,為了更好地對比該校考生的升學情況,統計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結論正確的是().A.與2016年相比,2019年不上線的人數有所增加B.與2016年相比,2019年一本達線人數減少C.與2016年相比,2019年二本達線人數增加了0.3倍D.2016年與2019年藝體達線人數相同5.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.6.已知復數,其中,,是虛數單位,則()A. B. C. D.7.以,為直徑的圓的方程是A. B.C. D.8.已知數列是以1為首項,2為公差的等差數列,是以1為首項,2為公比的等比數列,設,,則當時,的最大值是()A.8 B.9 C.10 D.119.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.710.已知盒中有3個紅球,3個黃球,3個白球,且每種顏色的三個球均按,,編號,現從中摸出3個球(除顏色與編號外球沒有區別),則恰好不同時包含字母,,的概率為()A. B. C. D.11.由曲線圍成的封閉圖形的面積為()A. B. C. D.12.已知復數為虛數單位),則z的虛部為()A.2 B. C.4 D.二、填空題:本題共4小題,每小題5分,共20分。13.運行下面的算法偽代碼,輸出的結果為_____.14.某陶瓷廠準備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經過兩次燒制,當第一次燒制合格后方可進入第二次燒制,再次燒制過程相互獨立.根據該廠現有的技術水平,經過第一次燒制后,甲、乙、丙三件產品合格的概率依次為0.5、0.6、0.4,經過第二次燒制后,甲、乙、丙三件產品合格的概率依次為0.6、0.5、0.75;則第一次燒制后恰有一件產品合格的概率為________;經過前后兩次燒制后,合格工藝品的件數為,則隨機變量的期望為________.15.某部門全部員工參加一項社會公益活動,按年齡分為三組,其人數之比為,現用分層抽樣的方法從總體中抽取一個容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總人數為__________.16.已知向量=(-4,3),=(6,m),且,則m=__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)若函數在處取得極值1,證明:(2)若恒成立,求實數的取值范圍.18.(12分)設函數.(Ⅰ)討論函數的單調性;(Ⅱ)若函數有兩個極值點,求證:.19.(12分)已知等差數列的公差,且,,成等比數列.(1)求數列的通項公式;(2)設,求數列的前項和.20.(12分)如圖,⊙的直徑的延長線與弦的延長線相交于點,為⊙上一點,,交于點.求證:~.21.(12分)新高考,取消文理科,實行“”,成績由語文、數學、外語統一高考成績和自主選考的3門普通高中學業水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調查結果制成下表:年齡(歲)頻數515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據上表完成下面列聯表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調查者中隨機選取3人進行調查,記選中的3人中了解新高考的人數為,求的分布列以及.22.(10分)在平面直角坐標系xOy中,拋物線C:,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為().(1)求拋物線C的極坐標方程;(2)若拋物線C與直線l交于A,B兩點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎題.2.D【解析】
由題意得,表示不等式的解集中整數解之和為6.當時,數形結合(如圖)得的解集中的整數解有無數多個,解集中的整數解之和一定大于6.當時,,數形結合(如圖),由解得.在內有3個整數解,為1,2,3,滿足,所以符合題意.當時,作出函數和的圖象,如圖所示.若,即的整數解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數的取值范圍是.故選D.3.C【解析】
由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.本題考查了復數的運算,考查了復數相等的涵義.對于復數的運算類問題,易錯點是把當成進行運算.4.A【解析】
設2016年高考總人數為x,則2019年高考人數為,通過簡單的計算逐一驗證選項A、B、C、D.【詳解】設2016年高考總人數為x,則2019年高考人數為,2016年高考不上線人數為,2019年不上線人數為,故A正確;2016年高考一本人數,2019年高考一本人數,故B錯誤;2019年二本達線人數,2016年二本達線人數,增加了倍,故C錯誤;2016年藝體達線人數,2019年藝體達線人數,故D錯誤.故選:A.本題考查柱狀圖的應用,考查學生識圖的能力,是一道較為簡單的統計類的題目.5.D【解析】
試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.6.D【解析】試題分析:由,得,則,故選D.考點:1、復數的運算;2、復數的模.7.A【解析】
設圓的標準方程,利用待定系數法一一求出,從而求出圓的方程.【詳解】設圓的標準方程為,由題意得圓心為,的中點,根據中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.本題考查待定系數法求圓的方程,解題的關鍵是假設圓的標準方程,建立方程組,屬于基礎題.8.B【解析】
根據題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數列,∴.∵是以1為首項,2為公比的等比數列,∴.∴.∵,∴,解得.則當時,的最大值是9.故選:.本題考查了等差數列,等比數列,f分組求和,意在考查學生對于數列公式方法的靈活運用.9.B【解析】
根據拋物線中過焦點的兩段線段關系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標準方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B本題考查了拋物線的基本性質及其簡單應用,基本不等式的用法,屬于中檔題.10.B【解析】
首先求出基本事件總數,則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”,記事件“恰好不同時包含字母,,”為,利用對立事件的概率公式計算可得;【詳解】解:從9個球中摸出3個球,則基本事件總數為(個),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”記事件“恰好不同時包含字母,,”為,則.故選:B本題考查了古典概型及其概率計算公式,考查了排列組合的知識,解答的關鍵在于正確理解題意,屬于基礎題.11.A【解析】
先計算出兩個圖像的交點分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.本題考察定積分的應用,屬于基礎題.解題時注意積分區間和被積函數的選取.12.A【解析】
對復數進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.本題考查復數的四則運算及虛部的概念,計算過程要注意.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
模擬程序的運行過程知該程序運行后計算并輸出的值,用裂項相消法求和即可.【詳解】模擬程序的運行過程知,該程序運行后執行:.故答案為:本題考查算法語句中的循環語句和裂項相消法求和;掌握循環體執行的次數是求解本題的關鍵;屬于基礎題.14.0.380.9【解析】
考慮恰有一件的三種情況直接計算得到概率,隨機變量的可能取值為,計算得到概率,再計算數學期望得到答案.【詳解】第一次燒制后恰有一件產品合格的概率為:.甲、乙、丙三件產品合格的概率分別為:,,.故隨機變量的可能取值為,故;;;.故.故答案為:0.38;0.9.本題考查了概率的計算,數學期望,意在考查學生的計算能力和應用能力.15.60【解析】
根據樣本容量及各組人數比,可求得C組中的人數;由組中甲、乙二人均被抽到的概率是可求得C組的總人數,即可由各組人數比求得總人數.【詳解】三組人數之比為,現用分層抽樣的方法從總體中抽取一個容量為20的樣本,則三組抽取人數分別.設組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.本題考查了分層抽樣的定義與簡單應用,古典概型概率的簡單應用,由各層人數求總人數的應用,屬于基礎題.16.8.【解析】
利用轉化得到加以計算,得到.【詳解】向量則.本題考查平面向量的坐標運算、平面向量的數量積、平面向量的垂直以及轉化與化歸思想的應用.屬于容易題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見詳解;(2)【解析】
(1)求出函數的導函數,由在處取得極值1,可得且.解出,構造函數,分析其單調性,結合,即可得到的范圍,命題得證;
(2)由分離參數,得到恒成立,構造函數,求導函數,再構造函數,進行二次求導.由知,則在上單調遞增.根據零點存在定理可知有唯一零點,且.由此判斷出時,單調遞減,時,單調遞增,則,即.由得,再次構造函數,求導分析單調性,從而得,即,最終求得,則.【詳解】解:(1)由題知,∵函數在,處取得極值1,,且,,,令,則為增函數,,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,則令,則,,,在上單調遞增,且,有唯一零點,且,當時,,,單調遞減;當時,,,單調遞增.,由整理得,令,則方程等價于而在上恒大于零,在上單調遞增,.,∴實數的取值范圍為.本題考查了函數的極值,利用導函數判斷函數的單調性,函數的零點存在定理,證明不等式,解決不等式恒成立問題.其中多次構造函數,是解題的關鍵,屬于綜合性很強的難題.18.(Ⅰ)見解析(Ⅱ)見解析【解析】
(Ⅰ)求導得到,討論,,三種情況得到單調區間.(Ⅱ)設,要證,即證,,設,根據函數單調性得到證明.【詳解】(Ⅰ),令,,(1)當,即時,,,在上單調遞增;(2)當,即時,設的兩根為(),,①若,,時,,所以在和上單調遞增,時,,所以在上單調遞減,②若,,時,,所以在上單調遞減,時,,所以在上單調遞增.綜上,當時,在上單調遞增;當時,在和上單調遞增,在上單調遞減;當時,在上單調遞減,在上單調遞增.(Ⅱ)不妨設,要證,即證,即證,由(Ⅰ)可知,,,可得,,所以有,令,,所以在單調遞增,所以,因為,所以,所以.本題考查了函數單調性,證明不等式,意在考查學生的分類討論能力和計算能力.19.(1);(2).【解析】
(1)根據等比中項性質可構造方程求得,由等差數列通項公式可求得結果;(2)由(1)可得,可知為等比數列,利用分組求和法,結合等差和等比數列求和公式可求得結果.【詳解】(1)成等比數列,,即,,解得:,.(2)由(1)得:,,,數列是首項為,公比為的等比數列,.本題考查等差數列通項公式的求解、分組求和法求解數列的前項和的問題;關鍵是能夠根據通項公式證得數列為等比數列,進而采用分組求和法,結合等差和等比數列求和公式求得結果.20.證明見解析【解析】
根據相似三角形的判定定理,已知兩個三角形有公共角,題中未給出線段比例關系,故可根據判定定理一需找到另外一組相等角,結合平面幾何的知識證得即可.【詳解】證明:∵,所以,又因為,所以.在與中,,,故~.本題考查平面幾何中同弧所對的圓心角與圓周角的關系、相似三角形的判定定理;考查邏輯推理能力和數形結合思想;分析圖形,找出角與角之間的關系是證明本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CI 457-2024電子級多晶硅用聚乙烯包裝材料技術規范
- T/CGAS 034-2024燃氣發電熱水機系統技術規程
- 小賣部轉讓協助合同7篇
- 網站廣告投放合同(三)與網站廣告投放合同3篇
- 美容養生館勞動合同協議6篇
- 心理衛生與心理健康概述
- 尾礦庫觀測井施工合同5篇
- 內部有效股份轉讓合同6篇
- 有限公司隱名投資協議書3篇
- 中草藥銷售合同3篇
- 科學上海會考試卷及答案
- 中小學校園安全風險防控規范操作手冊與案例分析
- 大模型備案-落實算法安全主體責任基本情況-XX集團有限公司
- 重大危險源安全管理培訓
- 封閉管理的疫情防控課件
- 離婚協議書正規打印(2025年版)
- 世界各地文化創意產業發展報告表
- 房地產交易律師見證書范文
- 教師如何使用AI開展教學DeepSeek使用指南人工智能 課件
- 現代商業環境下醫療器械的網絡營銷實踐案例分析
- 應急預案的協作與協調機制
評論
0/150
提交評論