




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河北省臨西縣實驗中學高三階段性檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知(為虛數單位,為的共軛復數),則復數在復平面內對應的點在().A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知函數是偶函數,當時,函數單調遞減,設,,,則的大小關系為()A. B. C. D.3.已知函數,若函數的圖象恒在軸的上方,則實數的取值范圍為()A. B. C. D.4.的展開式中的系數為()A.5 B.10 C.20 D.305.已知函數,,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.6.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.7.計算等于()A. B. C. D.8.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②9.三棱錐中,側棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.10.已知是平面內互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.11.已知函數,則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱12.若點是角的終邊上一點,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.己知雙曲線的左、右焦點分別為,直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,,垂足為,若在雙曲線上,則雙曲線的離心率為_______14.函數(為自然對數的底數,),若函數恰有個零點,則實數的取值范圍為__________________.15.在平面直角坐標系中,曲線在點處的切線與x軸相交于點A,其中e為自然對數的底數.若點,的面積為3,則的值是______.16.記復數z=a+bi(i為虛數單位)的共軛復數為,已知z=2+i,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,設,過點的直線與圓相切,且與拋物線相交于兩點.(1)當在區間上變動時,求中點的軌跡;(2)設拋物線焦點為,求的周長(用表示),并寫出時該周長的具體取值.18.(12分)如圖,在平面直角坐標系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準線與圓C相切.(1)求橢圓E的方程;(2)設過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當時,求直線l的方程.19.(12分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統一高考科目成績和自主選擇的3門普通高中學業水平等級考試科目成績組成,總分為750分.其中,統一高考科目為語文、數學、外語,自主選擇的3門普通高中學業水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數、外三科各占150分,選考科目成績采用“賦分制”,即原始分數不直接用,而是按照學生分數在本科目考試的排名來劃分等級并以此打分得到最后得分.根據高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數區間,得到考生的等級成績.舉例說明.某同學化學學科原始分為65分,該學科C+等級的原始分分布區間為58~69,則該同學化學學科的原始成績屬C+等級.而C+等級的轉換分區間為61~70,那么該同學化學學科的轉換分為:設該同學化學科的轉換等級分為x,69-6565-58=70-x四舍五入后該同學化學學科賦分成績為67.(1)某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態分布ξ~N(60,12(i)若小明同學在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區間為82~93,求小明轉換后的物理成績;(ii)求物理原始分在區間(72,84)的人數;(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區間[61,80]的人數,求X的分布列和數學期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68220.(12分)如圖,在四棱錐中,側棱底面,,,,是棱的中點.(1)求證:平面;(2)若,點是線段上一點,且,求直線與平面所成角的正弦值.21.(12分)如圖,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點.(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在線段上是否存在一點,使直線與平面所成的角正弦值為,若存在求出的長,若不存在說明理由.22.(10分)棉花的纖維長度是評價棉花質量的重要指標,某農科所的專家在土壤環境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機抽取21根棉花纖維進行統計,結果如下表:(記纖維長度不低于311的為“長纖維”,其余為“短纖維”)纖維長度甲地(根數)34454乙地(根數)112116(1)由以上統計數據,填寫下面列聯表,并判斷能否在犯錯誤概率不超過1.125的前提下認為“纖維長度與土壤環境有關系”.甲地乙地總計長纖維短纖維總計附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現從上述41根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進行檢測,在這8根纖維中,記乙地“短纖維”的根數為,求的分布列及數學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
設,由,得,利用復數相等建立方程組即可.【詳解】設,則,所以,解得,故,復數在復平面內對應的點為,在第四象限.故選:D.【點睛】本題考查復數的幾何意義,涉及到共軛復數的定義、復數的模等知識,考查學生的基本計算能力,是一道容易題.2.A【解析】
根據圖象關于軸對稱可知關于對稱,從而得到在上單調遞增且;再根據自變量的大小關系得到函數值的大小關系.【詳解】為偶函數圖象關于軸對稱圖象關于對稱時,單調遞減時,單調遞增又且,即本題正確選項:【點睛】本題考查利用函數奇偶性、對稱性和單調性比較函數值的大小關系問題,關鍵是能夠通過奇偶性和對稱性得到函數的單調性,通過自變量的大小關系求得結果.3.B【解析】
函數的圖象恒在軸的上方,在上恒成立.即,即函數的圖象在直線上方,先求出兩者相切時的值,然后根據變化時,函數的變化趨勢,從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠在的上方,設與的切點,則,解得,易知越小,圖象越靠上,所以.故選:B.【點睛】本題考查函數圖象與不等式恒成立的關系,考查轉化與化歸思想,首先函數圖象轉化為不等式恒成立,然后不等式恒成立再轉化為函數圖象,最后由極限位置直線與函數圖象相切得出參數的值,然后得出參數范圍.4.C【解析】
由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數為.故選:C.【點睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應寫準確,本題是一道基礎題.5.B【解析】
由題意可將方程轉化為,令,,進而將方程轉化為,即或,再利用的單調性與最值即可得到結論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉化為.即,所以或.因為,當時,,所以在,上單調遞增,且時,.當時,,在上單調遞減,且時,.所以當時,取最大值,當,有一根.所以恰有兩個不相等的實根,所以.故選:B.【點睛】本題考查了函數與方程的關系,考查函數的單調性與最值,轉化的數學思想,屬于中檔題.6.B【解析】
根據題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質、拋物線的幾何性質,考查了學生的計算能力,屬于中檔題7.A【解析】
利用誘導公式、特殊角的三角函數值,結合對數運算,求得所求表達式的值.【詳解】原式.故選:A【點睛】本小題主要考查誘導公式,考查對數運算,屬于基礎題.8.C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.9.B【解析】由題,側棱底面,,,,則根據余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內接多面體,熟練掌握球的半徑公式是解答的關鍵.10.C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設,則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數性質.11.D【解析】
先將函數化為,再由三角函數的性質,逐項判斷,即可得出結果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數對稱軸可得:解得:,當,,故C正確;對于D,正弦函數對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數的性質,熟記三角函數基本公式和基本性質,考查了分析能力和計算能力,屬于基礎題.12.A【解析】
根據三角函數的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據三角函數的定義,可得,則,故選A.【點睛】本題主要考查了三角函數的定義和正弦的倍角公式的化簡、求值,其中解答中根據三角函數的定義和正弦的倍角公式,準確化簡、計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由,則,所以點,因為,可得,點坐標化簡為,代入雙曲線的方程求解.【詳解】設,則,即,解得,則,所以,即,代入雙曲線的方程可得,所以所以解得.故答案為:【點睛】本題主要考查了直線與雙曲線的位置關系,及三角恒等變換,還考查了運算求解的能力和數形結合的思想,屬于中檔題.14.【解析】
令,則,恰有四個解.由判斷函數增減性,求出最小值,列出相應不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調遞減,在上單調遞增,則,可得.設的負根為,由題意知,,,,則,.故答案為:.【點睛】本題考查導數在函數當中的應用,屬于難題.15.【解析】
對求導,再根據點的坐標可得切線方程,令,可得點橫坐標,由的面積為3,求解即得.【詳解】由題,,切線斜率,則切線方程為,令,解得,又的面積為3,,解得.故答案為:【點睛】本題考查利用導數研究函數的切線,難度不大.16.3﹣4i【解析】
計算得到z2=(2+i)2=3+4i,再計算得到答案.【詳解】∵z=2+i,∴z2=(2+i)2=3+4i,則.故答案為:3﹣4i.【點睛】本題考查了復數的運算,共軛復數,意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1).(2)的周長為,時,的周長為【解析】
(1)設的方程為,根據題意由點到直線的距離公式可得,將直線方程與拋物線方程聯立可得,設?坐標分別是?,利用韋達定理以及中點坐標公式消參即可求解.(2)根據拋物線的定義可得,由(1)可得,再利用弦長公式即可求解.【詳解】(1)設的方程為于是聯立設?坐標分別是?則設的中點坐標為,則消去參數得:(2)設,,由拋物線定義知,,∴由(1)知∴,,的周長為時,的周長為【點睛】本題考查了動點的軌跡方程、直線與拋物線的位置關系、拋物線的定義、弦長公式,考查了計算能力,屬于中檔題.18.(1)(2)或.【解析】
(1)圓的方程已知,根據條件列出方程組,解方程即得;(2)設,,顯然直線l的斜率存在,方法一:設直線l的方程為:,將直線方程和橢圓方程聯立,消去,可得,同理直線方程和圓方程聯立,可得,再由可解得,即得;方法二:設直線l的方程為:,與橢圓方程聯立,可得,將其與圓方程聯立,可得,由可解得,即得.【詳解】(1)記橢圓E的焦距為().右頂點在圓C上,右準線與圓C:相切.解得,,橢圓方程為:.(2)法1:設,,顯然直線l的斜率存在,設直線l的方程為:.直線方程和橢圓方程聯立,由方程組消去y得,整理得.由,解得.直線方程和圓方程聯立,由方程組消去y得,由,解得.又,則有.即,解得,故直線l的方程為或.分法2:設,,當直線l與x軸重合時,不符題意.設直線l的方程為:.由方程組消去x得,,解得.由方程組消去x得,,解得.又,則有.即,解得,故直線l的方程為或.【點睛】本題考查求橢圓的標準方程,以及直線和橢圓的位置關系,考查學生的分析和運算能力.19.(1)(i)83.;(ii)272.(2)見解析.【解析】
(1)根據原始分數分布區間及轉換分區間,結合所給示例,即可求得小明轉換后的物理成績;根據正態分布滿足N60,122(2)根據各等級人數所占比例可知在區間61,80內的概率為25,由二項分布即可求得X【詳解】(1)(i)設小明轉換后的物理等級分為x,93-8484-82求得x≈82.64.小明轉換后的物理成績為83分;(ii)因為物理考試原始分基本服從正態分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在區間72,84的人數為2000×0.136=272(人);(2)由題意得,隨機抽取1人,其等級成績在區間61,80內的概率為25隨機抽取4人,則X~B4,PX=0=3PX=2=CPX=4X的分布列為X01234P812162169616數學期望EX【點睛】本題考查了統計的綜合應用,正態分布下求某區間概率的方法,分布列及數學期望的求法,文字多,數據多,需要細心的分析和理解,屬于中檔題。20.(1)證明見解析;(2)【解析】
(1)的中點,連接,,證明四邊形是平行四邊形可得,故而平面;(2)以為原點建立空間坐標系,求出平面的法向量,計算與的夾角的余弦值得出答案.【詳解】(1)證明:取的中點,連接,,,分別是,的中點,,,又,,,,四邊形是平行四邊形,,又平面,平面,平面.(2)解:,,又,故,以為原點,以,,為坐標軸建立空間直角坐標系,則,0,,,0,,,2,,,0,,,2,,是的中點,是的三等分點,,1,,,,,,,,,0,,,2,,設平面的法向量為,,,則,即,令可得,,,,,直線與平面所成角的正弦值為.【點睛】本題考查了線面平行的判定,空間向量與直線與平面所成角的計算,屬于中檔題.21.(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)線段上是存在一點,,使直線與平面所成的角正弦值為.【解析】
(Ⅰ)取中點,連結、,推導出四邊形是平行四邊形,從而,由此能證明平面;(Ⅱ)取中點,連結,,推導出平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 綜合實踐項目 細胞結構模型制作 教學設計-2024-2025學年人教版生物七年級上冊
- 小學語文人教部編版 (五四制)一年級上冊8 雨點兒教學設計
- 第六課 友誼之樹常青 教學設計-2024-2025學年統編版道德與法治七年級上冊
- 風溫肺熱護理常規
- 江蘇省句容市后白中學九年級化學上冊《3.1 構成物質的基本微粒》教學設計 (新版)滬教版
- 7 微生物與健康教學設計 -2024-2025學年蘇教版六年級上冊
- 七年級語文上冊 第一單元教學設計 新人教版
- 《8葉的蒸騰作用》教學設計-2023-2024學年科學三年級上冊青島版
- 酒店餐飲與康樂管理
- Lesson 47 Summer Plans(教學設計)2023-2024學年七年級英語下冊同步教學(冀教版河北專版)
- 2025年鄭州食品工程職業學院單招職業技能考試題庫附答案
- DB11∕T1481-2024生產經營單位生產安全事故應急預案評審規范
- LY/T 2762-2024黃精
- 乳腺癌的篩查
- 2025年杭州大有供電服務有限公司招聘筆試參考題庫含答案解析
- 公司第1季度品質部工作總結報告
- 單片機應用技術試題題庫答案
- 燃氣管道安全評估合同
- 2025年浙江省金融控股有限公司招聘筆試參考題庫含答案解析
- 新產品開發流程和步驟
- 反恐維穩培訓課件
評論
0/150
提交評論