




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
甘肅省靜寧縣一中2025年高三5月考前模擬數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若復(fù)數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.2.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.53.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內(nèi)任取一點(diǎn),則該點(diǎn)落在區(qū)域的概率為()A. B. C. D.4.設(shè),是兩條不同的直線(xiàn),,是兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個(gè)數(shù)為()A. B. C. D.5.在中,在邊上滿(mǎn)足,為的中點(diǎn),則().A. B. C. D.6.在正項(xiàng)等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.87.若為虛數(shù)單位,則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知,則不等式的解集是()A. B. C. D.9.已知函數(shù),為的零點(diǎn),為圖象的對(duì)稱(chēng)軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.10.已知集合A={0,1},B={0,1,2},則滿(mǎn)足A∪C=B的集合C的個(gè)數(shù)為()A.4 B.3 C.2 D.111.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長(zhǎng)為3,則該幾何體表面積為()A. B. C. D.12.某工廠(chǎng)只生產(chǎn)口罩、抽紙和棉簽,如圖是該工廠(chǎng)年至年各產(chǎn)量的百分比堆積圖(例如:年該工廠(chǎng)口罩、抽紙、棉簽產(chǎn)量分別占、、),根據(jù)該圖,以下結(jié)論一定正確的是()A.年該工廠(chǎng)的棉簽產(chǎn)量最少B.這三年中每年抽紙的產(chǎn)量相差不明顯C.三年累計(jì)下來(lái)產(chǎn)量最多的是口罩D.口罩的產(chǎn)量逐年增加二、填空題:本題共4小題,每小題5分,共20分。13.記復(fù)數(shù)z=a+bi(i為虛數(shù)單位)的共軛復(fù)數(shù)為,已知z=2+i,則_____.14.在中,角、、所對(duì)的邊分別為、、,若,,則的取值范圍是_____.15.的展開(kāi)式中,常數(shù)項(xiàng)為_(kāi)_____;系數(shù)最大的項(xiàng)是______.16.已知數(shù)列的前項(xiàng)和為,,,,則滿(mǎn)足的正整數(shù)的所有取值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當(dāng)x>0時(shí),若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實(shí)數(shù)a的取值范圍.18.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若滿(mǎn)足,,,求.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,為的導(dǎo)函數(shù),設(shè),求的取值范圍,并求取到最小值時(shí)所對(duì)應(yīng)的的值.20.(12分)已知函數(shù),.(1)證明:函數(shù)的極小值點(diǎn)為1;(2)若函數(shù)在有兩個(gè)零點(diǎn),證明:.21.(12分)已知,且的解集為.(1)求實(shí)數(shù),的值;(2)若的圖像與直線(xiàn)及圍成的四邊形的面積不小于14,求實(shí)數(shù)取值范圍.22.(10分)已知拋物線(xiàn)的準(zhǔn)線(xiàn)過(guò)橢圓C:(a>b>0)的左焦點(diǎn)F,且點(diǎn)F到直線(xiàn)l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)F做直線(xiàn)與橢圓C交于A(yíng),B兩點(diǎn),P是AB的中點(diǎn),線(xiàn)段AB的中垂線(xiàn)交直線(xiàn)l于點(diǎn)Q.若,求直線(xiàn)AB的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
由復(fù)數(shù)的幾何意義可得表示復(fù)數(shù),對(duì)應(yīng)的兩點(diǎn)間的距離,由兩點(diǎn)間距離公式即可求解.【詳解】由復(fù)數(shù)的幾何意義可得,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為,所以,其中,故選C本題主要考查復(fù)數(shù)的幾何意義,由復(fù)數(shù)的幾何意義,將轉(zhuǎn)化為兩復(fù)數(shù)所對(duì)應(yīng)點(diǎn)的距離求值即可,屬于基礎(chǔ)題型.2.B【解析】
還原幾何體的直觀(guān)圖,可將此三棱錐放入長(zhǎng)方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀(guān)圖為,體積.故選:B.本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計(jì)算能力,屬于中檔題.3.C【解析】
據(jù)題意可知,是與面積有關(guān)的幾何概率,要求落在區(qū)域內(nèi)的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計(jì)算即可得答案.【詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內(nèi)部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據(jù)幾何概率的計(jì)算公式可得,故選:C.本題主要考查了幾何概率的計(jì)算,本題是與面積有關(guān)的幾何概率模型.解決本題的關(guān)鍵是要準(zhǔn)確求出兩區(qū)域的面積.4.C【解析】
利用線(xiàn)線(xiàn)、線(xiàn)面、面面相應(yīng)的判定與性質(zhì)來(lái)解決.【詳解】如果兩條平行線(xiàn)中一條垂直于這個(gè)平面,那么另一條也垂直于這個(gè)平面知①正確;當(dāng)直線(xiàn)平行于平面與平面的交線(xiàn)時(shí)也有,,故②錯(cuò)誤;若,則垂直平面內(nèi)以及與平面平行的所有直線(xiàn),故③正確;若,則存在直線(xiàn)且,因?yàn)椋裕瑥亩盛苷_.故選:C.本題考查空間中線(xiàn)線(xiàn)、線(xiàn)面、面面的位置關(guān)系,里面涉及到了相應(yīng)的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.5.B【解析】
由,可得,,再將代入即可.【詳解】因?yàn)椋裕?故選:B.本題考查平面向量的線(xiàn)性運(yùn)算性質(zhì)以及平面向量基本定理的應(yīng)用,是一道基礎(chǔ)題.6.B【解析】
根據(jù)題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.本題考查了等比數(shù)列的計(jì)算,意在考查學(xué)生的計(jì)算能力.7.B【解析】
由共軛復(fù)數(shù)的定義得到,通過(guò)三角函數(shù)值的正負(fù),以及復(fù)數(shù)的幾何意義即得解【詳解】由題意得,因?yàn)椋栽趶?fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限.故選:B本題考查了共軛復(fù)數(shù)的概念及復(fù)數(shù)的幾何意義,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.8.A【解析】
構(gòu)造函數(shù),通過(guò)分析的單調(diào)性和對(duì)稱(chēng)性,求得不等式的解集.【詳解】構(gòu)造函數(shù),是單調(diào)遞增函數(shù),且向左移動(dòng)一個(gè)單位得到,的定義域?yàn)椋遥詾槠婧瘮?shù),圖像關(guān)于原點(diǎn)對(duì)稱(chēng),所以圖像關(guān)于對(duì)稱(chēng).不等式等價(jià)于,等價(jià)于,注意到,結(jié)合圖像關(guān)于對(duì)稱(chēng)和單調(diào)遞增可知.所以不等式的解集是.故選:A本小題主要考查根據(jù)函數(shù)的單調(diào)性和對(duì)稱(chēng)性解不等式,屬于中檔題.9.B【解析】
由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗(yàn)的這個(gè)值滿(mǎn)足條件.【詳解】解:函數(shù),,為的零點(diǎn),為圖象的對(duì)稱(chēng)軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當(dāng)時(shí),由為圖象的對(duì)稱(chēng)軸,可得,,故有,,滿(mǎn)足為的零點(diǎn),同時(shí)也滿(mǎn)足滿(mǎn)足在上單調(diào),故為的最大值,故選:B.本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對(duì)稱(chēng)性,屬于中檔題.10.A【解析】
由可確定集合中元素一定有的元素,然后列出滿(mǎn)足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項(xiàng).考查集合并集運(yùn)算,屬于簡(jiǎn)單題.11.C【解析】
幾何體是由一個(gè)圓錐和半球組成,其中半球的半徑為1,圓錐的母線(xiàn)長(zhǎng)為3,底面半徑為1,計(jì)算得到答案.【詳解】幾何體是由一個(gè)圓錐和半球組成,其中半球的半徑為1,圓錐的母線(xiàn)長(zhǎng)為3,底面半徑為1,故幾何體的表面積為.故選:.本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計(jì)算能力和空間想象能力.12.C【解析】
根據(jù)該廠(chǎng)每年產(chǎn)量未知可判斷A、B、D選項(xiàng)的正誤,根據(jù)每年口罩在該廠(chǎng)的產(chǎn)量中所占的比重最大可判斷C選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】由于該工廠(chǎng)年至年的產(chǎn)量未知,所以,從年至年棉簽產(chǎn)量、抽紙產(chǎn)量以及口罩產(chǎn)量的變化無(wú)法比較,故A、B、D選項(xiàng)錯(cuò)誤;由堆積圖可知,從年至年,該工廠(chǎng)生產(chǎn)的口罩占該工廠(chǎng)的總產(chǎn)量的比重是最大的,則三年累計(jì)下來(lái)產(chǎn)量最多的是口罩,C選項(xiàng)正確.故選:C.本題考查堆積圖的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.3﹣4i【解析】
計(jì)算得到z2=(2+i)2=3+4i,再計(jì)算得到答案.【詳解】∵z=2+i,∴z2=(2+i)2=3+4i,則.故答案為:3﹣4i.本題考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù),意在考查學(xué)生的計(jì)算能力.14.【解析】
計(jì)算出角的取值范圍,結(jié)合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.本題主要考查了正弦定理,正弦函數(shù)圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.15.【解析】
求出二項(xiàng)展開(kāi)式的通項(xiàng),令指數(shù)為零,求出參數(shù)的值,代入可得出展開(kāi)式中的常數(shù)項(xiàng);求出項(xiàng)的系數(shù),利用作商法可求出系數(shù)最大的項(xiàng).【詳解】的展開(kāi)式的通項(xiàng)為,令,得,所以,展開(kāi)式中的常數(shù)項(xiàng)為;令,令,即,解得,,,因此,展開(kāi)式中系數(shù)最大的項(xiàng)為.故答案為:;.本題考查二項(xiàng)展開(kāi)式中常數(shù)項(xiàng)的求解,同時(shí)也考查了系數(shù)最大項(xiàng)的求解,涉及展開(kāi)式通項(xiàng)的應(yīng)用,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.16.20,21【解析】
由題意知數(shù)列奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗(yàn)即可.【詳解】解:由題意知數(shù)列的奇數(shù)項(xiàng)構(gòu)成公差為的等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時(shí),,.當(dāng)時(shí),,.由此可知,滿(mǎn)足的正整數(shù)的所有取值為20,21.故答案為:20,21本題考查等差數(shù)列與等比數(shù)列通項(xiàng)與求和公式,是綜合題,分清奇數(shù)項(xiàng)和偶數(shù)項(xiàng)是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ);(Ⅱ)。【解析】
(Ⅰ)分類(lèi)討論,去掉絕對(duì)值,求得原絕對(duì)值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當(dāng)時(shí),原不等式可化為,此時(shí)不成立;當(dāng)時(shí),原不等式可化為,解得,即;當(dāng)時(shí),原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因?yàn)椋?dāng)且僅當(dāng)時(shí)等號(hào)成立,所以.當(dāng)時(shí),,所以.所以,解得,故實(shí)數(shù)的取值范圍為.本題主要考查了絕對(duì)值不等式的解法,以及轉(zhuǎn)化與化歸思想,難度一般;常見(jiàn)的絕對(duì)值不等式的解法,法一:利用絕對(duì)值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點(diǎn)分段法”求解,體現(xiàn)了分類(lèi)討論的思想;法三:通過(guò)構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.18.(1);(2)【解析】
(1)化簡(jiǎn)得到,取,解得答案.(2),解得,根據(jù)余弦定理得到,再用一次余弦定理解得答案.【詳解】(1).取,解得.(2),因?yàn)椋剩?根據(jù)余弦定理:,..本題考查了三角恒等變換,三角函數(shù)單調(diào)性,余弦定理,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.19.(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)的取值范圍是;對(duì)應(yīng)的的值為.【解析】
(1)當(dāng)時(shí),求的導(dǎo)數(shù)可得函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,利用導(dǎo)函數(shù),可得的范圍,再表達(dá),構(gòu)造新函數(shù)可求的取值范圍,從而可求取到最小值時(shí)所對(duì)應(yīng)的的值.【詳解】(1)函數(shù)由條件得函數(shù)的定義域:,當(dāng)時(shí),,所以:,時(shí),,當(dāng)時(shí),,當(dāng),時(shí),,則函數(shù)的單調(diào)增區(qū)間為:,單調(diào)遞減區(qū)間為:,;(2)由條件得:,,由條件得有兩根:,,滿(mǎn)足,△,可得:或;由,可得:.,函數(shù)的對(duì)稱(chēng)軸為,,所以:,;,可得:,,,則:,所以:;所以:,令,,,則,因?yàn)椋簳r(shí),,所以:在,上是單調(diào)遞減,在,上單調(diào)遞增,因?yàn)椋海?),,(1),所以,;即的取值范圍是:,;,所以有,則,;所以當(dāng)取到最小值時(shí)所對(duì)應(yīng)的的值為;本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值和單調(diào)區(qū)間問(wèn)題,考查利用導(dǎo)數(shù)求函數(shù)的最值,體現(xiàn)了轉(zhuǎn)化的思想方法,屬于難題.20.(1)見(jiàn)解析(2)見(jiàn)解析【解析】
(1)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的增減.(2)函數(shù)在有兩個(gè)零點(diǎn),即方程在區(qū)間有兩解,令通過(guò)二次求導(dǎo)確定函數(shù)單調(diào)性證明參數(shù)范圍.【詳解】解:(1)證明:因?yàn)椋?dāng)時(shí),,,所以在區(qū)間遞減;當(dāng)時(shí),,所以,所以在區(qū)間遞增;且,所以函數(shù)的極小值點(diǎn)為1(2)函數(shù)在有兩個(gè)零點(diǎn),即方程在區(qū)間有兩解,令,則令,則,所以在單調(diào)遞增,又,故存在唯一的,使得,即,所以在單調(diào)遞減,在區(qū)間單調(diào)遞增,且,又因?yàn)椋裕匠剃P(guān)于的方程在有兩個(gè)零點(diǎn),由的圖象可知,,即.本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,確定函數(shù)的極值,利用二次求導(dǎo),零點(diǎn)存在性定理確定參數(shù)范圍,屬于難題.21.(1),;(2)【解析】
(1)解絕對(duì)值不等式得,根據(jù)不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線(xiàn)及交點(diǎn)的坐標(biāo),通過(guò)分割法將四邊形的面積分為兩個(gè)三角形,列出不等式,解不等式即可.【詳解】(1)由得:,,即,解得,.(2)的圖像與直線(xiàn)及圍成的四邊形,,,,.過(guò)點(diǎn)向引垂線(xiàn),垂足為,則.化簡(jiǎn)得:,(舍)或.故的取值范圍為.本題主要考查了絕對(duì)值不等式的求法,以及絕對(duì)值不等式在幾何中的應(yīng)用,屬于中檔題.22.(1);(2)或.【解析】
(1)由拋物線(xiàn)的準(zhǔn)線(xiàn)方程求出的值,確
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年平?jīng)雎殬I(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)試近5年常考版參考題庫(kù)含答案解析
- 2025年宿遷職業(yè)技術(shù)學(xué)院高職單招高職單招英語(yǔ)2016-2024歷年頻考點(diǎn)試題含答案解析
- 2025年安徽揚(yáng)子職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))歷年真題考點(diǎn)含答案解析
- 2025年天津醫(yī)學(xué)高等專(zhuān)科學(xué)校高職單招職業(yè)適應(yīng)性測(cè)試歷年(2019-2024年)真題考點(diǎn)試卷含答案解析
- 年中工作總結(jié)與計(jì)劃
- 中國(guó)春節(jié)傳統(tǒng)文化的歷史發(fā)展
- 電梯安全裝置培訓(xùn)課件
- 醫(yī)療衛(wèi)生行業(yè)整肅治理教育
- 2018黨章培訓(xùn)課件
- 人教版數(shù)學(xué)六年級(jí)下冊(cè)第二單元百分?jǐn)?shù)(二)單元測(cè)試含答案
- 大數(shù)據(jù)平臺(tái)數(shù)據(jù)治理項(xiàng)目建設(shè)方案
- 人教版小學(xué)三年級(jí)下冊(cè)數(shù)學(xué)教案教學(xué)設(shè)計(jì)
- 音樂(lè)電臺(tái)行業(yè)經(jīng)營(yíng)模式分析
- HG∕T 3781-2014 同步帶用浸膠玻璃纖維繩
- 【萬(wàn)向傳動(dòng)軸設(shè)計(jì)11000字(論文)】
- DZ∕T 0214-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 銅、鉛、鋅、銀、鎳、鉬(正式版)
- 營(yíng)銷(xiāo)現(xiàn)場(chǎng)作業(yè)安全工作規(guī)程
- 青少年科普主題活動(dòng)方案
- 《中華民族大團(tuán)結(jié)》(初中)-第11課-團(tuán)結(jié)奮斗-繁榮發(fā)展-教案
- (正式版)QBT 1950-2024 家具表面漆膜耐鹽浴測(cè)定法
- 2021年10月自考00567馬列文論選讀試題及答案含解析
評(píng)論
0/150
提交評(píng)論