




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省學軍中學2025年高三第三次診斷數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在精準扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種2.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,它的終邊過點,則的值為()A. B. C. D.3.設點,P為曲線上動點,若點A,P間距離的最小值為,則實數t的值為()A. B. C. D.4.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.5.已知,則,不可能滿足的關系是()A. B. C. D.6.已知函數,若恒成立,則滿足條件的的個數為()A.0 B.1 C.2 D.37.已知實數,則下列說法正確的是()A. B.C. D.8.已知集合,則集合()A. B. C. D.9.如圖所示是某年第一季度五省GDP情況圖,則下列說法中不正確的是()A.該年第一季度GDP增速由高到低排位第3的是山東省B.與去年同期相比,該年第一季度的GDP總量實現了增長C.該年第一季度GDP總量和增速由高到低排位均居同一位的省份有2個D.去年同期浙江省的GDP總量超過了4500億元10.已知隨機變量的分布列是則()A. B. C. D.11.已知定義在上的偶函數,當時,,設,則()A. B. C. D.12.設,是空間兩條不同的直線,,是空間兩個不同的平面,給出下列四個命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④二、填空題:本題共4小題,每小題5分,共20分。13.若存在實數使得不等式在某區間上恒成立,則稱與為該區間上的一對“分離函數”,下列各組函數中是對應區間上的“分離函數”的有___________.(填上所有正確答案的序號)①,,;②,,;③,,;④,,.14.的展開式中的常數項為_______.15.(5分)已知橢圓方程為,過其下焦點作斜率存在的直線與橢圓交于兩點,為坐標原點,則面積的取值范圍是____________.16.李明自主創業,在網上經營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網上支付成功后,李明會得到支付款的80%.①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)我國在2018年社保又出新的好消息,之前流動就業人員跨地區就業后,社保轉移接續的手續往往比較繁瑣,費時費力.社保改革后將簡化手續,深得流動就業人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續所需時間(天)與人數的頻數分布表:時間人數156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續所需時間與是否流動人員的列聯表,并判斷是否有95%的把握認為“辦理社保手續所需時間與是否流動人員”有關.列聯表如下流動人員非流動人員總計辦理社保手續所需時間不超過4天辦理社保手續所需時間超過4天60總計21090300(2)為了改進工作作風,提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87918.(12分)如圖,在四棱錐中,平面平面,.(Ⅰ)求證:平面;(Ⅱ)若銳二面角的余弦值為,求直線與平面所成的角.19.(12分)已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.(1)求證:;(2)當時,求的取值范圍.20.(12分)已知函數的圖象在處的切線方程是.(1)求的值;(2)若函數,討論的單調性與極值;(3)證明:.21.(12分)設,函數,其中為自然對數的底數.(1)設函數.①若,試判斷函數與的圖像在區間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設函數,試判斷函數是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.22.(10分)函數,且恒成立.(1)求實數的集合;(2)當時,判斷圖象與圖象的交點個數,并證明.(參考數據:)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數,由分步計數原理計算可得答案.【詳解】解:根據題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應用,涉及分步計數原理問題,屬于基礎題.2.B【解析】
根據三角函數定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過點,∴,.∴.故選:.【點睛】本題考查了三角函數定義,和差公式,意在考查學生的計算能力.3.C【解析】
設,求,作為的函數,其最小值是6,利用導數知識求的最小值.【詳解】設,則,記,,易知是增函數,且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.【點睛】本題考查導數的應用,考查用導數求最值.解題時對和的關系的處理是解題關鍵.4.C【解析】
根據拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.5.C【解析】
根據即可得出,,根據,,即可判斷出結果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數式和對數式的互化,對數的運算,以及基本不等式:和不等式的應用,屬于中檔題6.C【解析】
由不等式恒成立問題分類討論:①當,②當,③當,考查方程的解的個數,綜合①②③得解.【詳解】①當時,,滿足題意,②當時,,,,,故不恒成立,③當時,設,,令,得,,得,下面考查方程的解的個數,設(a),則(a)由導數的應用可得:(a)在為減函數,在,為增函數,則(a),即有一解,又,均為增函數,所以存在1個使得成立,綜合①②③得:滿足條件的的個數是2個,故選:.【點睛】本題考查了不等式恒成立問題及利用導數研究函數的解得個數,重點考查了分類討論的數學思想方法,屬難度較大的題型.7.C【解析】
利用不等式性質可判斷,利用對數函數和指數函數的單調性判斷.【詳解】解:對于實數,,不成立對于不成立.對于.利用對數函數單調遞增性質,即可得出.對于指數函數單調遞減性質,因此不成立.故選:.【點睛】利用不等式性質比較大小.要注意不等式性質成立的前提條件.解決此類問題除根據不等式的性質求解外,還經常采用特殊值驗證的方法.8.D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎題.9.D【解析】
根據折線圖、柱形圖的性質,對選項逐一判斷即可.【詳解】由折線圖可知A、B項均正確,該年第一季度總量和增速由高到低排位均居同一位的省份有江蘇均第一.河南均第四.共2個.故C項正確;.故D項不正確.故選:D.【點睛】本題考查折線圖、柱形圖的識別,考查學生的閱讀能力、數據處理能力,屬于中檔題.10.C【解析】
利用分布列求出,求出期望,再利用期望的性質可求得結果.【詳解】由分布列的性質可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查.11.B【解析】
根據偶函數性質,可判斷關系;由時,,求得導函數,并構造函數,由進而判斷函數在時的單調性,即可比較大小.【詳解】為定義在上的偶函數,所以所以;當時,,則,令則,當時,,則在時單調遞增,因為,所以,即,則在時單調遞增,而,所以,綜上可知,即,故選:B.【點睛】本題考查了偶函數的性質應用,由導函數性質判斷函數單調性的應用,根據單調性比較大小,屬于中檔題.12.C【解析】
根據線面平行或垂直的有關定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯②:因為,,所以或,因為,所以,故②對③:或,故③錯④:如圖因為,,在內過點作直線的垂線,則直線,又因為,設經過和相交的平面與交于直線,則又,所以因為,,所以,所以,故④對.故選:C【點睛】考查線面平行或垂直的判斷,基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.①②④【解析】
由題意可知,若要存在使得成立,我們可考慮兩函數是否存在公切點,若兩函數在公切點對應的位置一個單增,另一個單減,則很容易判斷,對①,③,④都可以采用此法判斷,對②分析式子特點可知,,進而判斷【詳解】①時,令,則,單調遞增,,即.令,則,單調遞減,,即,因此,滿足題意.②時,易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時,注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調遞增,在上單調遞減,所以,即.令,則,易知在上單調遞減,在上單調遞增,所以,即.因此,滿足題意.故答案為:①②④【點睛】本題考查新定義題型、利用導數研究函數圖像,轉化與化歸思想,屬于中檔題14.【解析】
寫出展開式的通項公式,考慮當的指數為零時,對應的值即為常數項.【詳解】的展開式通項公式為:,令,所以,所以常數項為.
故答案為:.【點睛】本題考查二項展開式中指定項系數的求解,難度較易.解答問題的關鍵是,能通過展開式通項公式分析常數項對應的取值.15.【解析】
由題意,,則,得.由題意可設的方程為,,聯立方程組,消去得,恒成立,,,則,點到直線的距離為,則,又,則,當且僅當即時取等號.故面積的取值范圍是.16.130.15.【解析】
由題意可得顧客需要支付的費用,然后分類討論,將原問題轉化為不等式恒成立的問題可得的最大值.【詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設顧客一次購買水果的促銷前總價為元,元時,李明得到的金額為,符合要求.元時,有恒成立,即,即元.所以的最大值為.【點睛】本題主要考查不等式的概念與性質?數學的應用意識?數學式子變形與運算求解能力,以實際生活為背景,創設問題情境,考查學生身邊的數學,考查學生的數學建模素養.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)列聯表見解析,有;(2)分布列見解析,.【解析】
(1)根據題意,結合已知數據即可填寫列聯表,計算出的觀測值,即可進行判斷;(2)先計算出時間在和選取的人數,再求出的可取值,根據古典概型的概率計算公式求得分布列,結合分布列即可求得數學期望.【詳解】(1)因為樣本數據中有流動人員210人,非流動人員90人,所以辦理社保手續所需時間與是否流動人員列聯表如下:辦理社保手續所需時間與是否流動人員列聯表流動人員非流動人員總計辦理社保手續所需時間不超過4天453075辦理社保手續所需時間超過4天16560225總計21090300結合列聯表可算得.有95%的把握認為“辦理社保手續所需時間與是否流動人員”有關.(2)根據分層抽樣可知時間在可選9人,時間在可以選3名,故,則,,,,可知分布列為0123可知.【點睛】本題考查獨立性檢驗中的計算,以及離散型隨機變量的分布列以及數學期望,涉及分層抽樣,屬綜合性中檔題.18.(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由余弦定理解得,即可得到,由面面垂直的性質可得平面,即可得到,從而得證;(Ⅱ)在平面中,過點作于點,則平面,如圖所示建立空間直角坐標系,設,其中,利用空間向量法得到二面角的余弦,即可得到的關系,從而得解;【詳解】解:(Ⅰ)證明:在中,,解得,則,從而因為平面平面,平面平面所以平面,又因為平面,所以,因為,,平面,平面,所以平面;(Ⅱ)解:在平面中,過點作于點,則平面,如圖所示建立空間直角坐標系,設,其中,則設平面的法向量為,則,即,令,則又平面的一個法向量,則從而,故則直線與平面所成的角為,大小為.【點睛】本題考查線面垂直的判定,面面垂直的性質定理的應用,利用空間向量法解決立體幾何問題,屬于中檔題.19.(1)見解析;(2).【解析】
(1)分兩種情況討論:①兩切線、中有一條切線斜率不存在時,求出兩切線的方程,驗證結論成立;②兩切線、的斜率都存在,可設切線的方程為,將該直線的方程與橢圓的方程聯立,由可得出關于的二次方程,利用韋達定理得出兩切線的斜率之積為,進而可得出結論;(2)求出點、的坐標,利用兩點間的距離公式結合韋達定理得出,換元,可得出,利用二次函數的基本性質可求得的取值范圍.【詳解】(1)由于點在半圓上,則.①當兩切線、中有一條切線斜率不存在時,可求得兩切線方程為,或,,此時;②當兩切線、的斜率都存在時,設切線的方程為(、的斜率分別為、),,,,.綜上所述,;(2)根據題意得、,,令,則,所以,當時,,當時,.因此,的取值范圍是.【點睛】本題考查橢圓兩切線垂直的證明,同時也考查了弦長的取值范圍的計算,考查計算能力,屬于中等題.20.(1);(2)單調遞減區間為,單調遞增區間為,的極小值為,無極大值;(3)見解析.【解析】
(1)切點既在切線上又在曲線上得一方程,再根據斜率等于該點的導數再列一方程,解方程組即可;(2)先對求導數,根據導數判斷和求解即可.(3)把證明轉化為證明,然后證明極小值大于極大值即可.【詳解】解:(1)函數的定義域為由已知得,則,解得.(2)由題意得,則.當時,,所以單調遞減,當時,,所以單調遞增,所以,單調遞減區間為,單調遞增區間為,的極小值為,無極大值.(3)要證成立,只需證成立.令,則,當時,單調遞增,當時,單調遞減,所以的極大值為,即由(2)知,時,,且的最小值點與的最大值點不同,所以,即.所以,.【點睛】知識方面,考查建立方程組求未知數,利用導數求函數的單調區間和極值以及不等式的證明;能力方面,考查推理論證能力、分析問題和解決問題的能力以及運算求解能力;試題難度大.21.(1)①函數與的圖象在區間上有交點;②證明見解析;(2)且;【解析】
(1)①令,結合函數零點的判定定理判斷即可;②設切點橫坐標為,求出切線方程,得到,根據函數的單調性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數的單調區間,確定的范圍即可.【詳解】解:(1)①當時,函數,令,,則,,故,又函數在區間上的圖象是不間斷曲線,故函數在區間上有零點,故函數與的圖象在區間上有交點;②證明:假設存在,使得直線是曲線的切線,切點橫坐標為,且,則切線在點切線方程為,即,從而,且,消去,得,故滿足等式,令
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 業務合作框架協議書
- 樓上住房滲水協議書
- 試驗檢測分包協議書
- 委托拖車協議書樣本
- 重慶珠寶回購協議書
- 商戶進場物業協議書
- 買房賠償協議書范本
- 酒店聘請經理協議書
- 離婚調解協議書離婚
- 駐廠工人安全協議書
- 2025版《保障中小企業款項支付條例》學習解讀課件
- 2025年浙江安防職業技術學院單招職業技能測試題庫必考題
- 奔馳事故留修專員年終總結
- 2025電工(高級技師)技能鑒定精練考試指導題庫及答案(濃縮500題)
- 患者隱私保護培訓課件
- 《校園安全教育(第二版)》 課件全套 項目1-8 走進安全教育 -確保實習安全
- 2025年人民法院信息技術服務中心招聘應屆高校畢業生高頻重點模擬試卷提升(共500題附帶答案詳解)
- GB/T 45159.2-2024機械振動與沖擊黏彈性材料動態力學性能的表征第2部分:共振法
- 2025年全球及中國財務報表審計服務行業頭部企業市場占有率及排名調研報告
- 2025年浙江金華市軌道交通集團招聘筆試參考題庫含答案解析
- 2023年高考化學試卷(河北)(解析卷)
評論
0/150
提交評論