河南省安陽第三十六中學2025屆高三下學期開學回頭考數學試題_第1頁
河南省安陽第三十六中學2025屆高三下學期開學回頭考數學試題_第2頁
河南省安陽第三十六中學2025屆高三下學期開學回頭考數學試題_第3頁
河南省安陽第三十六中學2025屆高三下學期開學回頭考數學試題_第4頁
河南省安陽第三十六中學2025屆高三下學期開學回頭考數學試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省安陽第三十六中學2025屆高三下學期開學回頭考數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集,集合,,則集合()A. B. C. D.2.設,,則()A. B. C. D.3.設是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則4.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣125.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.6.已知雙曲線的左,右焦點分別為、,過的直線l交雙曲線的右支于點P,以雙曲線的實軸為直徑的圓與直線l相切,切點為H,若,則雙曲線C的離心率為()A. B. C. D.7.已知拋物線的焦點為,若拋物線上的點關于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.8.已知函數滿足,且,則不等式的解集為()A. B. C. D.9.函數的圖象大致為()A. B.C. D.10.某中學2019年的高考考生人數是2016年高考考生人數的1.2倍,為了更好地對比該校考生的升學情況,統計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結論正確的是().A.與2016年相比,2019年不上線的人數有所增加B.與2016年相比,2019年一本達線人數減少C.與2016年相比,2019年二本達線人數增加了0.3倍D.2016年與2019年藝體達線人數相同11.設,,,則,,三數的大小關系是A. B.C. D.12.使得的展開式中含有常數項的最小的n為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,,則______.14.下圖是一個算法流程圖,則輸出的的值為__________.15.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.16.已知全集為R,集合,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦點在軸上,且順次連接四個頂點恰好構成了一個邊長為且面積為的菱形.(1)求橢圓的方程;(2)設,過橢圓右焦點的直線交于、兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.18.(12分)已知兩數.(1)當時,求函數的極值點;(2)當時,若恒成立,求的最大值.19.(12分)設的內角、、的對邊長分別為、、.設為的面積,滿足.(1)求;(2)若,求的最大值.20.(12分)已知橢圓:(),點是的左頂點,點為上一點,離心率.(1)求橢圓的方程;(2)設過點的直線與的另一個交點為(異于點),是否存在直線,使得以為直徑的圓經過點,若存在,求出直線的方程;若不存在,說明理由.21.(12分)已知函數.(1)討論的單調性;(2)若函數在區間上的最小值為,求m的值.22.(10分)已知函數.(1)若,且,求證:;(2)若時,恒有,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.2.D【解析】

集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點睛】本題主要考查了一次不等式的解集以及集合的交集運算,屬于基礎題.3.C【解析】

在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.4.D【解析】

分別聯立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結果.【詳解】設,聯立則,因為直線經過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數,屬基礎題。5.C【解析】

設,,,,設直線的方程為:,與拋物線方程聯立,由△得,利用韋達定理結合已知條件得,,代入上式即可求出的取值范圍.【詳解】設直線的方程為:,,,,,聯立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.6.A【解析】

在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點睛】本題考查雙曲線離心率的計算問題,處理雙曲線離心率問題的關鍵是建立三者間的關系,本題是一道中檔題.7.B【解析】

由焦點得拋物線方程,設點的坐標為,根據對稱可求出點的坐標,寫出直線方程,聯立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質,點關于直線對稱,屬于中檔題.8.B【解析】

構造函數,利用導數研究函數的單調性,即可得到結論.【詳解】設,則函數的導數,,,即函數為減函數,,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導數研究函數單調性,根據函數的單調性解不等式,考查學生分析問題解決問題的能力,是難題.9.A【解析】

用偶函數的圖象關于軸對稱排除,用排除,用排除.故只能選.【詳解】因為,所以函數為偶函數,圖象關于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據函數的性質,辨析函數的圖像,排除法,屬于中檔題.10.A【解析】

設2016年高考總人數為x,則2019年高考人數為,通過簡單的計算逐一驗證選項A、B、C、D.【詳解】設2016年高考總人數為x,則2019年高考人數為,2016年高考不上線人數為,2019年不上線人數為,故A正確;2016年高考一本人數,2019年高考一本人數,故B錯誤;2019年二本達線人數,2016年二本達線人數,增加了倍,故C錯誤;2016年藝體達線人數,2019年藝體達線人數,故D錯誤.故選:A.【點睛】本題考查柱狀圖的應用,考查學生識圖的能力,是一道較為簡單的統計類的題目.11.C【解析】

利用對數函數,指數函數以及正弦函數的性質和計算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點睛】本題考查對數值,指數值和正弦值大小的比較,是基礎題,解題時選擇合適的中間值比較是關鍵,注意合理地進行等價轉化.12.B【解析】二項式展開式的通項公式為,若展開式中有常數項,則,解得,當r取2時,n的最小值為5,故選B【考點定位】本題考查二項式定理的應用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由已知利用同角三角函數的基本關系式可求得,的值,由兩角差的正弦公式即可計算得的值.【詳解】,,,,,,,,.故答案為:【點睛】本題主要考查了同角三角函數的基本關系、兩角差的正弦公式,需熟記公式,屬于基礎題.14.3【解析】

分析程序中各變量、各語句的作用,根據流程圖所示的順序,即可得出結論.【詳解】解:初始,第一次循環:;第二次循環:;第三次循環:;經判斷,此時跳出循環,輸出.故答案為:【點睛】本題考查了程序框圖的應用問題,解題的關鍵是對算法語句的理解,屬基礎題.15.【解析】

確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學生的空間想象能力和計算能力.16.【解析】

先化簡集合A,再求A∪B得解.【詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}【點睛】本題主要考查集合的化簡和并集運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)由已知條件列出關于和的方程,并計算出和的值,jike得到橢圓的方程.(2)設出點和點坐標,運用點坐標計算出,分類討論直線的斜率存在和不存在兩種情況,求解出的最小值.【詳解】(1)由己知得:,解得,所以,橢圓的方程(2)設,.當直線垂直于軸時,,且此時,,當直線不垂直于軸時,設直線由,得.,.要使恒成立,只需,即最小值為【點睛】本題考查了求解橢圓方程以及直線與橢圓的位置關系,求解過程中需要分類討論直線的斜率存在和不存在兩種情況,并運用根與系數的關系轉化為只含一個變量的表達式進行求解,需要掌握解題方法,并且有一定的計算量.18.(1)唯一的極大值點1,無極小值點.(2)1【解析】

(1)求出導函數,求得的解,確定此解兩側導數值的正負,確定極值點;(2)問題可變形為恒成立,由導數求出函數的最小值,時,無最小值,因此只有,從而得出的不等關系,得出所求最大值.【詳解】解:(1)定義域為,當時,,令得,當所以在上單調遞增,在上單調遞減,所以有唯一的極大值點,無極小值點.(2)當時,.若恒成立,則恒成立,所以恒成立,令,則,由題意,函數在上單調遞減,在上單調遞增,所以,所以所以,所以,故的最大值為1.【點睛】本題考查用導數求函數極值,研究不等式恒成立問題.在求極值時,由確定的不一定是極值點,還需滿足在兩側的符號相反.不等式恒成立深深轉化為求函數的最值,這里分離參數法起關鍵作用.19.(1);(2).【解析】

(1)根據條件形式選擇,然后利用余弦定理和正弦定理化簡,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數值表示出,即可得到,再利用三角恒等變換,化簡為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當且僅當時取最大值.故的最大值為.【點睛】本題主要考查正弦定理,余弦定理,三角形面積公式的應用,以及利用三角恒等變換求函數的最值,意在考查學生的轉化能力和數學運算能力,屬于基礎題20.(1);(2)存在,【解析】

(1)把點代入橢圓C的方程,再結合離心率,可得a,b,c的關系,可得橢圓的方程;(2)設出直線的方程,代入橢圓,運用韋達定理可求得點的坐標,再由,可求得直線的方程,要注意檢驗直線是否和橢圓有兩個交點.【詳解】(1)由題可得∴,所以橢圓的方程(2)由題知,設,直線的斜率存在設為,則與橢圓聯立得,,∴,,∴若以為直徑的圓經過點,則,∴,化簡得,∴,解得或因為與不重合,所以舍.所以直線的方程為.【點睛】本題考查橢圓的簡單性質,考查直線與橢圓位置關系的應用,考查了向量的數量積的運用,屬于中檔題.21.(1)見解析(2)【解析】

(1)先求導,再對m分類討論,求出的單調性;(2)對m分三種情況討論求函數在區間上的最小值即得解.【詳解】(1)若,當時,;當時.,所以在上單調遞增,在上單調遞減若.在R上單調遞增若,當時,;當時.,所以在上單調遞增,在上單調遞減(2)由(1)可知,當時,在上單調遞增,則.則不合題意當時,在上單調遞減,在上單調遞增.則,即又因為單調遞增,且,故綜上,【點睛】本題主要考查利用導數研究函數的單調性和最值,意在考查學生對這些知識的理解掌握水平.22.(1)見解析;(2).【解析】

(1)利用導數分析函數的單調性,并設,則,,將不等式等價轉化為證明,構造函數,利用導數分析函數在區間上的單調性,通過推導出來證得結論;(2)構造函數,對實數分、、,利用導數分析函數的單調性,求出函數的最小值,再通過構造新函數,利用導數求出函數的最大值,可得出的最大值.【詳解】(1),,所以,函數單調遞增,所以,當時,,此時,函數單調遞

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論