




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南京市秦淮區2025年高三質量檢測試題(一)數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“是函數在區間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.已知正項等比數列滿足,若存在兩項,,使得,則的最小值為().A.16 B. C.5 D.43.如果直線與圓相交,則點與圓C的位置關系是()A.點M在圓C上 B.點M在圓C外C.點M在圓C內 D.上述三種情況都有可能4.已知雙曲線()的漸近線方程為,則()A. B. C. D.5.已知函數,則下列結論中正確的是①函數的最小正周期為;②函數的圖象是軸對稱圖形;③函數的極大值為;④函數的最小值為.A.①③ B.②④C.②③ D.②③④6.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.7.函數的部分圖像大致為()A. B.C. D.8.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨成組,則不同的派遣方案共有()種A. B. C. D.9.拋物線的焦點為,準線為,,是拋物線上的兩個動點,且滿足,設線段的中點在上的投影為,則的最大值是()A. B. C. D.10.已知中,,則()A.1 B. C. D.11.已知集合,,則()A. B.C. D.12.已知函數,若,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知關于空間兩條不同直線m、n,兩個不同平面、,有下列四個命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號為______.14.已知無蓋的圓柱形桶的容積是立方米,用來做桶底和側面的材料每平方米的價格分別為30元和20元,那么圓桶造價最低為________元.15.我國著名的數學家秦九韶在《數書九章》提出了“三斜求積術”.他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數的一半,自乘而得一個數,小斜平方乘以大斜平方,送到上面得到的那個數,相減后余數被4除,所得的數作為“實”,1作為“隅”,開平方后即得面積.所謂“實”、“隅”指的是在方程中,p為“隅”,q為“實”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點D是邊AB上一點,,,,,則的面積為________.16.已知為雙曲線的左、右焦點,過點作直線與圓相切于點,且與雙曲線的右支相交于點,若是上的一個靠近點的三等分點,且,則四邊形的面積為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知為等差數列,為等比數列,的前n項和為,滿足,,,.(1)求數列和的通項公式;(2)令,數列的前n項和,求.18.(12分)已知函數(I)當時,解不等式.(II)若不等式恒成立,求實數的取值范圍19.(12分)數列滿足,是與的等差中項.(1)證明:數列為等比數列,并求數列的通項公式;(2)求數列的前項和.20.(12分)在中,角,,的對邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點,求的最小值.21.(12分)已知函數,.(1)判斷函數在區間上的零點的個數;(2)記函數在區間上的兩個極值點分別為、,求證:.22.(10分)已知.(1)若曲線在點處的切線也與曲線相切,求實數的值;(2)試討論函數零點的個數.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.2、D【解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設等比數列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當且僅當時,等號成立.故選:D.【點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數列的知識,是一道中檔題.3、B【解析】
根據圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點到圓的圓心的距離大于半徑.即點與圓的位置關系是點在圓外.故選:【點睛】本題主要考查直線與圓相交的性質,考查點到直線距離公式的應用,屬于中檔題.4、A【解析】
根據雙曲線方程(),確定焦點位置,再根據漸近線方程得到求解.【詳解】因為雙曲線(),所以,又因為漸近線方程為,所以,所以.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.5、D【解析】
因為,所以①不正確;因為,所以,,所以,所以函數的圖象是軸對稱圖形,②正確;易知函數的最小正周期為,因為函數的圖象關于直線對稱,所以只需研究函數在上的極大值與最小值即可.當時,,且,令,得,可知函數在處取得極大值為,③正確;因為,所以,所以函數的最小值為,④正確.故選D.6、D【解析】
可設的內切圓的圓心為,設,,可得,由切線的性質:切線長相等推得,解得、,并設,求得的值,推得為等邊三角形,由焦距為三角形的高,結合離心率公式可得所求值.【詳解】可設的內切圓的圓心為,為切點,且為中點,,設,,則,且有,解得,,設,,設圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質,注意運用三角形的內心性質和等邊三角形的性質,切線的性質,考查化簡運算能力,屬于中檔題.7、A【解析】
根據函數解析式,可知的定義域為,通過定義法判斷函數的奇偶性,得出,則為偶函數,可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數,圖象關于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數解析式識別函數圖象,利用函數的奇偶性和特殊值法進行排除.8、C【解析】
在所有兩組至少都是人的分組中減去名女干部單獨成一組的情況,再將這兩組分配,利用分步乘法計數原理可得出結果.【詳解】兩組至少都是人,則分組中兩組的人數分別為、或、,
又因為名女干部不能單獨成一組,則不同的派遣方案種數為.故選:C.【點睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.9、B【解析】
試題分析:設在直線上的投影分別是,則,,又是中點,所以,則,在中,所以,即,所以,故選B.考點:拋物線的性質.【名師點晴】在直線與拋物線的位置關系問題中,涉及到拋物線上的點到焦點的距離,焦點弦長,拋物線上的點到準線(或與準線平行的直線)的距離時,常??紤]用拋物線的定義進行問題的轉化.象本題弦的中點到準線的距離首先等于兩點到準線距離之和的一半,然后轉化為兩點到焦點的距離,從而與弦長之間可通過余弦定理建立關系.10、C【解析】
以為基底,將用基底表示,根據向量數量積的運算律,即可求解.【詳解】,,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數量積運算,屬于中檔題.11、C【解析】
求出集合,計算出和,即可得出結論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎題.12、B【解析】
對分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數,由得或解得.故選:B.【點睛】本題考查利用分段函數性質解不等式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、③④【解析】
由直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關系是平行、相交或異面,①錯;②若且,則或者,②錯;③若,設過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.【點睛】本題考查直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關系,掌握空間線線、線面、面面位置關系是解題基礎.14、【解析】
設桶的底面半徑為,用表示出桶的總造價,利用基本不等式得出最小值.【詳解】設桶的底面半徑為,高為,則,故,圓通的造價為解法一:當且僅當,即時取等號.解法二:,則,令,即,解得,此函數在單調遞增;令,即,解得,此函數在上單調遞減;令,即,解得,即當時,圓桶的造價最低.所以故答案為:【點睛】本題考查了基本不等式的應用,注意驗證等號成立的條件,屬于基礎題.15、.【解析】
利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據“三斜求積術”可得,所以.【點睛】本題考查正切的和角公式,同角三角函數的基本關系式,余弦定理的應用,考查學生分析問題的能力和計算整理能力,難度較易.16、60【解析】
根據題中給的信息與雙曲線的定義可求得與,再在中,由余弦定理求解得,繼而得到各邊的長度,再根據計算求解即可.【詳解】如圖所示:設雙曲線的半焦距為.因為,,,所以由勾股定理,得.所以.因為是上一個靠近點的三等分點,是的中點,所以.由雙曲線的定義可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.則.則,得.則的底邊上的高為.所以.故答案為:60【點睛】本題主要考查了雙曲線中利用定義與余弦定理求解線段長度與面積的方法,需要根據雙曲線的定義表示各邊的長度,再在合適的三角形里面利用余弦定理求得基本量的關系.屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)設的公差為,的公比為,由基本量法列式求出后可得通項公式;(2)奇數項分一組用裂項相消法求和,偶數項分一組用等比數列求和公式求和.【詳解】(1)設的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數時,,為偶數時,,∴.【點睛】本題考查求等差數列和等比數列的通項公式,考查分組求和法及裂項相消法、等差數列與等比數列的前項和公式,求通項公式采取的是基本量法,即求出公差、公比,由通項公式前項和公式得出相應結論.數列求和問題,對不是等差數列或等比數列的數列求和,需掌握一些特殊方法:錯位相減法,裂項相消法,分組(并項)求和法,倒序相加法等等.18、(Ⅰ);(Ⅱ).【解析】試題分析:(1)根據零點分區間法,去掉絕對值解不等式;(2)根據絕對值不等式的性質得,因此將問題轉化為恒成立,借此不等式即可.試題解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集為.(Ⅱ)由不等式的性質得:,要使不等式恒成立,則當時,不等式恒成立;當時,解不等式得.綜上.所以實數的取值范圍為.19、(1)見解析,(2)【解析】
(1)根據等差中項的定義得,然后構造新等比數列,寫出的通項即可求(2)根據(1)的結果,分組求和即可【詳解】解:(1)由已知可得,即,可化為,故數列是以為首項,2為公比的等比數列.即有,所以.(2)由(1)知,數列的通項為:,故.【點睛】考查等差中項的定義和分組求和的方法;中檔題.20、(1);(2).【解析】
(1)利用余弦定理和二倍角的正弦公式,化簡即可得出結果;(2)在中,由余弦定理得,在中結合正弦定理求出,從而得出,即可得出的解析式,最后結合斜率的幾何意義,即可求出的最小值.【詳解】(1),,由題知,,則,則,,;(2)在中,由余弦定理得,,設,其中.在中,,,,,所以,,所以的幾何意義為兩點連線斜率的相反數,數形結合可得,故的最小值為.【點睛】本題考查正弦定理和余弦定理的實際應用,還涉及二倍角正弦公式和誘導公式,考查計算能力.21、(1);(2)見解析.【解析】
(1)利用導數分析函數在區間上的單調性與極值,結合零點存在定理可得出結論;(2)設函數的極大值點和極小值點分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數的單調性推導出,再利用正弦函數的單調性可得出結論.【詳解】(1),,,當時,,,,則函數在上單調遞增;當時,,,,則函數在上單調遞減;當時,,,,則函數在上單調遞增.,,,,.所以,函數在與不存在零點,在區間和上各存在一個零點.綜上所述,函數在區間上的零點的個數為;(2),.由(1)得,在區間與上存在零點,所以,函數在區間與上各存在一個極值點、,且,,且滿足即,,,又,即,,,,,由在上單調遞增,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年學年工作方案
- 2025年扶貧單位工作方案
- 2025年初三個人教學工作方案演講稿
- 重慶城市管理職業學院《應用中子物理學》2023-2024學年第二學期期末試卷
- 山東省德州市八校2025屆下學期初三第三次質量考評物理試題含解析
- 湖南農業大學《藥物分析A實驗》2023-2024學年第一學期期末試卷
- 2025年遼寧省葫蘆島市第一中學高三第一次診斷性考試生物試題文試題含解析
- 微課程的設計與應用
- 江西省宜春九中2025屆高三廣東六校高考模擬考試物理試題及參考答案含解析
- 滑膜炎超聲診斷
- 2024年山東省濟南市市中區九年級中考二模數學試題?。ㄔ戆?解析版)
- 生物醫學體系的確立與發展
- 社會心理學(西安交通大學)智慧樹知到期末考試答案2024年
- 行政管理學#-形考任務4-國開(ZJ)-參考資料
- 2024中國餐飲加盟行業白皮書-ccfax美團-202404
- 2024年山東省濟南市萊蕪區中考一模語文試卷
- 用工審批單(模板)
- 極光大數據:王者榮耀研究報告
- 【基于層次分析法的極兔快遞配送網點選址的案例分析10000字(論文)】
- 古詩詞誦讀《客至》高二語文課件(統編版選擇性必修下冊)
- 【我國“獨角獸”企業的發展問題及優化建議分析-以字節跳動為例16000字(論文)】
評論
0/150
提交評論