2025屆安徽省干汊河中學(xué)高三下第三次月考數(shù)學(xué)試題_第1頁
2025屆安徽省干汊河中學(xué)高三下第三次月考數(shù)學(xué)試題_第2頁
2025屆安徽省干汊河中學(xué)高三下第三次月考數(shù)學(xué)試題_第3頁
2025屆安徽省干汊河中學(xué)高三下第三次月考數(shù)學(xué)試題_第4頁
2025屆安徽省干汊河中學(xué)高三下第三次月考數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆安徽省干汊河中學(xué)高三下第三次月考數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復(fù)數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.42.函數(shù)的部分圖像如圖所示,若,點的坐標(biāo)為,若將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,則的最小值為()A. B. C. D.3.已知集合,,,則集合()A. B. C. D.4.若,則的值為()A. B. C. D.5.若各項均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.46.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.7.已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.8.已知是虛數(shù)單位,則()A. B. C. D.9.設(shè)集合則()A. B. C. D.10.設(shè)是虛數(shù)單位,,,則()A. B. C.1 D.211.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標(biāo)為,則此雙曲線的方程是A. B.C. D.12.已知是第二象限的角,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知△的三個內(nèi)角為,,,且,,成等差數(shù)列,則的最小值為__________,最大值為___________.14.已知雙曲線的左、右焦點分別為為雙曲線上任一點,且的最小值為,則該雙曲線的離心率是__________.15.已知集合A=,B=,若AB中有且只有一個元素,則實數(shù)a的值為_______.16.已知平面向量,,且,則向量與的夾角的大小為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點.圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當(dāng)線段AB的長度最小時,求s的值.18.(12分)已知;.(1)若為真命題,求實數(shù)的取值范圍;(2)若為真命題且為假命題,求實數(shù)的取值范圍.19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)求的極坐標(biāo)方程和的直角坐標(biāo)方程;(Ⅱ)設(shè)分別交于兩點(與原點不重合),求的最小值.20.(12分)已知函數(shù)(,)滿足下列3個條件中的2個條件:①函數(shù)的周期為;②是函數(shù)的對稱軸;③且在區(qū)間上單調(diào).(Ⅰ)請指出這二個條件,并求出函數(shù)的解析式;(Ⅱ)若,求函數(shù)的值域.21.(12分)如圖:在中,,,.(1)求角;(2)設(shè)為的中點,求中線的長.22.(10分)已知函數(shù),,.函數(shù)的導(dǎo)函數(shù)在上存在零點.求實數(shù)的取值范圍;若存在實數(shù),當(dāng)時,函數(shù)在時取得最大值,求正實數(shù)的最大值;若直線與曲線和都相切,且在軸上的截距為,求實數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù)復(fù)數(shù)的幾何意義可知復(fù)數(shù)對應(yīng)的點在以原點為圓心,1為半徑的圓上,再根據(jù)復(fù)數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復(fù)數(shù)對應(yīng)的點在以原點為圓心,1為半徑的圓上,表示復(fù)數(shù)對應(yīng)的點與點間的距離,又復(fù)數(shù)對應(yīng)的點所在圓的圓心到的距離為1,所以.故選:B【點睛】本題考查了復(fù)數(shù)模的定義及其幾何意義應(yīng)用,屬于基礎(chǔ)題.2.B【解析】

根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關(guān)于軸對稱,求得的最小值.【詳解】由于,函數(shù)最高點與最低點的高度差為,所以函數(shù)的半個周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【點睛】該題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決該題的關(guān)鍵,要求熟練掌握函數(shù)圖象之間的變換關(guān)系,屬于簡單題目.3.D【解析】

根據(jù)集合的混合運算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎(chǔ)題.4.C【解析】

根據(jù),再根據(jù)二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應(yīng)用,考查了二項式展開式通項公式的應(yīng)用,考查了數(shù)學(xué)運算能力5.C【解析】

由正項等比數(shù)列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.6.D【解析】

先根據(jù)三視圖還原幾何體是一個四棱錐,根據(jù)三視圖的數(shù)據(jù),計算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運算求解的能力,屬于中檔題.7.A【解析】

利用雙曲線:的焦點到漸近線的距離為,求出,的關(guān)系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點睛】本題考查雙曲線的簡單性質(zhì)的應(yīng)用,構(gòu)建出的關(guān)系是解題的關(guān)鍵,考查計算能力,屬于中檔題.8.B【解析】

根據(jù)復(fù)數(shù)的乘法運算法則,直接計算,即可得出結(jié)果.【詳解】.故選B【點睛】本題主要考查復(fù)數(shù)的乘法,熟記運算法則即可,屬于基礎(chǔ)題型.9.C【解析】

直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.10.C【解析】

由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.【點睛】本題考查了復(fù)數(shù)的運算,考查了復(fù)數(shù)相等的涵義.對于復(fù)數(shù)的運算類問題,易錯點是把當(dāng)成進行運算.11.D【解析】

根據(jù)點差法得,再根據(jù)焦點坐標(biāo)得,解方程組得,,即得結(jié)果.【詳解】設(shè)雙曲線的方程為,由題意可得,設(shè),,則的中點為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【點睛】本題主要考查利用點差法求雙曲線標(biāo)準(zhǔn)方程,考查基本求解能力,屬于中檔題.12.D【解析】

利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導(dǎo)公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)正弦定理可得,利用余弦定理以及均值不等式,可得角的范圍,然后構(gòu)造函數(shù),利用導(dǎo)數(shù),研究函數(shù)性質(zhì),可得結(jié)果.【詳解】由,,成等差數(shù)列所以所以又化簡可得當(dāng)且僅當(dāng)時,取等號又,所以令,則當(dāng),即時,當(dāng),即時,則在遞增,在遞減所以由,所以所以的最小值為最大值為故答案為:,【點睛】本題考查等差數(shù)列、正弦定理、余弦定理,還考查了不等式、導(dǎo)數(shù)的綜合應(yīng)用,難點在于根據(jù)余弦定理以及不等式求出,考驗分析能力以及邏輯思維能力,屬難題.14.【解析】

根據(jù)雙曲線方程,設(shè)及,將代入雙曲線方程并化簡可得,由題意的最小值為,結(jié)合平面向量數(shù)量積的坐標(biāo)運算化簡,即可求得的值,進而求得離心率即可.【詳解】設(shè)點,,則,即,∵,,,當(dāng)時,等號成立,∴,∴,∴.故答案為:.【點睛】本題考查了雙曲線與向量的綜合應(yīng)用,由平面向量數(shù)量積的最值求離心率,屬于中檔題.15.2【解析】

利用AB中有且只有一個元素,可得,可求實數(shù)a的值.【詳解】由題意AB中有且只有一個元素,所以,即.故答案為:.【點睛】本題主要考查集合的交集運算,集合交集的運算本質(zhì)是存同去異,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).16.【解析】

由,解得,進而求出,即可得出結(jié)果.【詳解】解:因為,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.【點睛】本題主要考查平面向量的運算,平面向量垂直,向量夾角等基礎(chǔ)知識;考查運算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),(2).【解析】

根據(jù)題意設(shè),可得PF的方程,根據(jù)距離即可求出;點Q處的切線的斜率存在,由對稱性不妨設(shè),根據(jù)導(dǎo)數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值.【詳解】因為拋物線C的方程為,所以F的坐標(biāo)為,設(shè),因為圓M與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點,則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設(shè),,,由知,點Q處的切線的斜率存在,由對稱性不妨設(shè),由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時,取得極小值也是最小值,即AB取得最小值此時.【點睛】本題考查了直線和拋物線的位置關(guān)系,以及利用導(dǎo)數(shù)求函數(shù)最值的關(guān)系,考查了運算能力和轉(zhuǎn)化能力,屬于難題.18.(1)(2)或【解析】

(1)根據(jù)為真命題列出不等式,進而求得實數(shù)的取值范圍;(2)應(yīng)用復(fù)合命題真假判定的口訣:真“非”假,假“非”真,一真“或”為真,兩真“且”才真.【詳解】(1),且,解得所以當(dāng)為真命題時,實數(shù)的取值范圍是.(2)由,可得,又∵當(dāng)時,,.∵當(dāng)為真命題,且為假命題時,∴與的真假性相同,當(dāng)假假時,有,解得;當(dāng)真真時,有,解得;故當(dāng)為真命題且為假命題時,可得或.【點睛】本題主要考查結(jié)合不等式的含有量詞的命題的恒成立問題,存在性問題,考查復(fù)合命題的真假判斷,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.19.(Ⅰ)直線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,的直角坐標(biāo)方程為;(Ⅱ)2.【解析】

(Ⅰ)由定義可直接寫出直線的極坐標(biāo)方程,對曲線同乘可得:,轉(zhuǎn)化成直角坐標(biāo)為;(Ⅱ)分別聯(lián)立兩直線和曲線的方程,由得,由得,則,結(jié)合三角函數(shù)即可求解;【詳解】(Ⅰ)直線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為由曲線的極坐標(biāo)方程得,所以的直角坐標(biāo)方程為.(Ⅱ)與的極坐標(biāo)方程聯(lián)立得所以.與的極坐標(biāo)方程聯(lián)立得所以.所以.所以當(dāng)時,取最小值2.【點睛】本題考查參數(shù)方程與極坐標(biāo)方程的互化,極坐標(biāo)方程與直角坐標(biāo)方程的互化,極坐標(biāo)中的幾何意義,屬于中檔題20.(Ⅰ)只有①②成立,;(Ⅱ).【解析】

(Ⅰ)依次討論①②成立,①③成立,②③成立,計算得到只有①②成立,得到答案.(Ⅱ)得到,得到函數(shù)值域.【詳解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,則,,,若①③成立,則,,不合題意,若②③成立,則,,與③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由題意得,,所以函數(shù)的值域為.【點睛】本題考查了三角函數(shù)的周期,對稱軸,單調(diào)性,值域,表達式,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.21.(1);(2)【解析】

(1)通過求出的值,利用正弦定理求出即可得角;(2)根據(jù)求出的值,由正弦定理求出邊,最后在中由余弦定理即可得結(jié)果.【詳解】(1)∵,∴.由正弦定理,即.得,∵,∴為鈍角,為銳角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【點睛】本題主要考查了正弦定理和余弦定理在解三角形中的應(yīng)用,考查三角函數(shù)知識的運用,屬于中檔題.22.;4;12.【解析】

由題意可知,,求導(dǎo)函數(shù),方程在區(qū)間上有實數(shù)解,求出實數(shù)的取值范圍;由,則,分步討論,并利用導(dǎo)函數(shù)在函數(shù)的單調(diào)性的研究,得出正實數(shù)的最大值;設(shè)直線與曲線的切點為,因為,所以切線斜率,切線方程為,設(shè)直線與曲線的切點為,因為,所以切線斜率,即切線方程為,整理得.所以,求得,設(shè),則,所以在上單調(diào)遞增,最后求出實數(shù)的值.【詳解】由題意可知,,則,即方程在區(qū)間上有實數(shù)解,解得;因為,則,①當(dāng),即時,恒成立,所以在上單調(diào)遞增,不符題意;②當(dāng)時,令,解得:,當(dāng)時,,單調(diào)遞增,所以不存在,使得在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論