




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北沙市中學2025年全國新課標II卷高考數學試題最后一模請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.,則與位置關系是()A.平行 B.異面C.相交 D.平行或異面或相交2.已知復數滿足,則()A. B. C. D.3.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.4.已知函數,若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)5.《算數書》竹簡于上世紀八十年代在湖北省江陵縣張家山出土,這是我國現存最早的有系統的數學典籍.其中記載有求“囷蓋”的術:“置如其周,令相承也.又以高乘之,三十六成一”.該術相當于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當于將圓錐體積公式中的圓周率近似取為()A. B. C. D.6.已知函數,若,則下列不等關系正確的是()A. B.C. D.7.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.8.已知函數,若函數的圖象恒在軸的上方,則實數的取值范圍為()A. B. C. D.9.設,是非零向量,若對于任意的,都有成立,則A. B. C. D.10.設,命題“存在,使方程有實根”的否定是()A.任意,使方程無實根B.任意,使方程有實根C.存在,使方程無實根D.存在,使方程有實根11.高三珠海一模中,經抽樣分析,全市理科數學成績X近似服從正態分布,且.從中隨機抽取參加此次考試的學生500名,估計理科數學成績不低于110分的學生人數約為()A.40 B.60 C.80 D.10012.已知的部分圖象如圖所示,則的表達式是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設是公差不為0的等差數列的前項和,且,則______.14.給出下列四個命題,其中正確命題的序號是_____.(寫出所有正確命題的序號)因為所以不是函數的周期;對于定義在上的函數若則函數不是偶函數;“”是“”成立的充分必要條件;若實數滿足則.15.設實數x,y滿足,則點表示的區域面積為______.16.在矩形中,,為的中點,將和分別沿,翻折,使點與重合于點.若,則三棱錐的外接球的表面積為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)當x≥0時,f(x)≤h(x)恒成立,求a的取值范圍;(2)當x<0時,研究函數F(x)=h(x)﹣g(x)的零點個數;(3)求證:(參考數據:ln1.1≈0.0953).18.(12分)在直角坐標系中,已知點,若以線段為直徑的圓與軸相切.(1)求點的軌跡的方程;(2)若上存在兩動點(A,B在軸異側)滿足,且的周長為,求的值.19.(12分)已知各項均為正數的數列的前項和為,且是與的等差中項.(1)證明:為等差數列,并求;(2)設,數列的前項和為,求滿足的最小正整數的值.20.(12分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.21.(12分)△的內角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.22.(10分)某網絡商城在年月日開展“慶元旦”活動,當天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當天銷售額的平均值;(2)估計抽取的家店鋪中元旦當天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在中的個數的分布列和數學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】結合圖(1),(2),(3)所示的情況,可得a與b的關系分別是平行、異面或相交.選D.2、A【解析】
根據復數的運算法則,可得,然后利用復數模的概念,可得結果.【詳解】由題可知:由,所以所以故選:A【點睛】本題主要考查復數的運算,考驗計算,屬基礎題.3、D【解析】
本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關性質判斷出三角形的形狀并求出高的長度,的長度即點縱坐標,然后將點縱坐標帶入圓的方程即可得出點坐標,最后將點坐標帶入雙曲線方程即可得出結果?!驹斀狻扛鶕}意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據雙曲線性質可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標為,將點縱坐標帶入圓的方程中可得,解得,,將點坐標帶入雙曲線中可得,化簡得,,,,故選D?!军c睛】本題考查了圓錐曲線的相關性質,主要考察了圓與雙曲線的相關性質,考查了圓與雙曲線的綜合應用,考查了數形結合思想,體現了綜合性,提高了學生的邏輯思維能力,是難題。4、C【解析】
利用導數求得在上遞增,結合與圖象,判斷出的大小關系,由此比較出的大小關系.【詳解】因為,所以在上單調遞增;在同一坐標系中作與圖象,,可得,故.故選:C【點睛】本小題主要考查利用導數研究函數的單調性,考查利用函數的單調性比較大小,考查數形結合的數學思想方法,屬于中檔題.5、C【解析】
將圓錐的體積用兩種方式表達,即,解出即可.【詳解】設圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數學問題考查圓錐體積計算的實際應用,考查學生的運算求解能力、創新能力.6、B【解析】
利用函數的單調性得到的大小關系,再利用不等式的性質,即可得答案.【詳解】∵在R上單調遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數的單調性、不等式性質的運用,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.7、D【解析】
“是的充分不必要條件”等價于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【詳解】由題意知:可化簡為,,所以中變量取值的集合是中變量取值集合的真子集,所以.【點睛】利用原命題與其逆否命題的等價性,對是的充分不必要條件進行命題轉換,使問題易于求解.8、B【解析】
函數的圖象恒在軸的上方,在上恒成立.即,即函數的圖象在直線上方,先求出兩者相切時的值,然后根據變化時,函數的變化趨勢,從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠在的上方,設與的切點,則,解得,易知越小,圖象越靠上,所以.故選:B.【點睛】本題考查函數圖象與不等式恒成立的關系,考查轉化與化歸思想,首先函數圖象轉化為不等式恒成立,然后不等式恒成立再轉化為函數圖象,最后由極限位置直線與函數圖象相切得出參數的值,然后得出參數范圍.9、D【解析】
畫出,,根據向量的加減法,分別畫出的幾種情況,由數形結合可得結果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當,即時,最小,滿足,對于任意的,所以本題答案為D.【點睛】本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關鍵在于用有向線段正確表示向量,屬于基礎題.10、A【解析】
只需將“存在”改成“任意”,有實根改成無實根即可.【詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實根”的否定是“任意,使方程無實根”.故選:A【點睛】本題考查含有一個量詞的命題的否定,此類問題要注意在兩個方面作出變化:1.量詞,2.結論,是一道基礎題.11、D【解析】
由正態分布的性質,根據題意,得到,求出概率,再由題中數據,即可求出結果.【詳解】由題意,成績X近似服從正態分布,則正態分布曲線的對稱軸為,根據正態分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數學成績不低于110分的人數為人,故選:.【點睛】本題考查正態分布的圖象和性質,考查學生分析問題的能力,難度容易.12、D【解析】
由圖象求出以及函數的最小正周期的值,利用周期公式可求得的值,然后將點的坐標代入函數的解析式,結合的取值范圍求出的值,由此可得出函數的解析式.【詳解】由圖象可得,函數的最小正周期為,.將點代入函數的解析式得,得,,,則,,因此,.故選:D.【點睛】本題考查利用圖象求三角函數解析式,考查分析問題和解決問題的能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】
先由,可得,再結合等差數列的前項和公式求解即可.【詳解】解:因為,所以,.故答案為:18.【點睛】本題考查了等差數列基本量的運算,重點考查了等差數列的前項和公式,屬基礎題.14、【解析】
對①,根據周期的定義判定即可.對②,根據偶函數滿足的性質判定即可.對③,舉出反例判定即可.對④,求解不等式再判定即可.【詳解】解:因為當時,所以由周期函數的定義知不是函數的周期,故正確;對于定義在上的函數,若,由偶函數的定義知函數不是偶函數,故正確;當時不滿足則“”不是“”成立的充分不必要條件,故錯誤;若實數滿足則所以成立,故正確.正確命題的序號是.故答案為:.【點睛】本題主要考查了命題真假的判定,屬于基礎題.15、【解析】
先畫出滿足條件的平面區域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數x,y滿足表示的平面區域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎題.16、.【解析】
計算外接圓的半徑,并假設外接球的半徑為R,可得球心在過外接圓圓心且垂直圓面的垂線上,然后根據面,即可得解.【詳解】由題意可知,,所以可得面,設外接圓的半徑為,由正弦定理可得,即,,設三棱錐外接球的半徑,因為外接球的球心為過底面圓心垂直于底面的直線與中截面的交點,則,所以外接球的表面積為.故答案為:.【點睛】本題考查三棱錐的外接球的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析;(3)見解析【解析】
(1)令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),求得導數,討論a>1和a≤1,判斷導數的符號,由恒成立思想可得a的范圍;(2)求得F(x)=h(x)﹣g(x)的導數和二階導數,判斷F'(x)的單調性,討論a≤﹣1,a>﹣1,F(x)的單調性和零點個數;(3)由(1)知,當a=1時,ex>1+ln(x+1)對x>0恒成立,令;由(2)知,當a=﹣1時,對x<0恒成立,令,結合條件,即可得證.【詳解】(Ⅰ)解:令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),則,①若a≤1,則,H'(x)≥0,H(x)在[0,+∞)遞增,H(x)≥H(0)=0,即f(x)≤h(x)在[0,+∞)恒成立,滿足,所以a≤1;②若a>1,H′(x)=ex﹣在[0,+∞)遞增,H'(x)≥H'(0)=1﹣a,且1﹣a<0,且x→+∞時,H'(x)→+∞,則?x0∈(0,+∞),使H'(x0)=0進而H(x)在[0,x0)遞減,在(x0,+∞)遞增,所以當x∈(0,x0)時H(x)<H(0)=0,即當x∈(0,x0)時,f(x)>h(x),不滿足題意,舍去;綜合①,②知a的取值范圍為(﹣∞,1].(Ⅱ)解:依題意得,則F'(x)=ex﹣x2+a,則F''(x)=ex﹣2x>0在(﹣∞,0)上恒成立,故F'(x)=ex﹣x2+a在(﹣∞,0)遞增,所以F'(x)<F'(0)=1+a,且x→﹣∞時,F'(x)→﹣∞;①若1+a≤0,即a≤﹣1,則F'(x)<F'(0)=1+a≤0,故F(x)在(﹣∞,0)遞減,所以F(x)>F(0)=0,F(x)在(﹣∞,0)無零點;②若1+a>0,即a>﹣1,則使,進而F(x)在遞減,在遞增,,且x→﹣∞時,,F(x)在上有一個零點,在無零點,故F(x)在(﹣∞,0)有一個零點.綜合①②,當a≤﹣1時無零點;當a>﹣1時有一個零點.(Ⅲ)證明:由(Ⅰ)知,當a=1時,ex>1+ln(x+1)對x>0恒成立,令,則即;由(Ⅱ)知,當a=﹣1時,對x<0恒成立,令,則,所以;故有.【點睛】本題考查導數的運用:求單調區間,考查函數零點存在定理的運用,考查分類討論思想方法,以及運算能力和推理能力,屬于難題.對于函數的零點問題,它和方程的根的問題,和兩個函數的交點問題是同一個問題,可以互相轉化;在轉化為兩個函數交點時,如果是一個常函數一個含自變量的函數,注意讓含有自變量的函數式子盡量簡單一些.18、(1);(2)【解析】
(1)設,則由題設條件可得,化簡后可得軌跡的方程.(2)設直線,聯立直線方程和拋物線方程后利用韋達定理化簡并求得,結合焦半徑公式及弦長公式可求的值及的長.【詳解】(1)設,則圓心的坐標為,因為以線段為直徑的圓與軸相切,所以,化簡得的方程為.(2)由題意,設直線,聯立得,設(其中)所以,,且,因為,所以,,所以,故或(舍),直線,因為的周長為所以.即,因為.又,所以,解得,所以.【點睛】本題考查曲線方程以及拋物線中的弦長計算,還涉及到向量的數量積.一般地,拋物線中的弦長問題,一般可通過聯立方程組并消元得到關于或的一元二次方程,再把已知等式化為關于兩個的交點橫坐標或縱坐標的關系式,該關系中含有或,最后利用韋達定理把關系式轉化為某一個變量的方程.本題屬于中檔題.19、(1)見解析,(2)最小正整數的值為35.【解析】
(1)由等差中項可知,當時,得,整理后可得,從而證明為等差數列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進而求出最小值.【詳解】解析:(1)由題意可得,當時,,∴,,當時,,整理可得,∴是首項為1,公差為1的等差數列,∴,.(2)由(1)可得,∴,解得,∴最小正整數的值為35.【點睛】本題考查了等差中項,考查了等差數列的定義,考查了與的關系,考查了裂項相消求和.當已知有與的遞推關系時,常代入進行整理.證明數列是等差數列時,一般借助數列,即后一項與前一項的差為常數.20、(1)見解析;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 周圍性面神經麻木護理措施
- 護理進修學習成果匯報
- 青花瓷映滄海:智慧與傳承的匯報
- 醬酒烤酒知識培訓課件
- 2025年結核病工作方案
- 護理科研項目立項申請匯報
- 精神障礙病人心理護理
- 遼寧省葫蘆島市2024-2025學年高一上學期1月期末考試英語試卷 含解析
- 2025年深圳圣誕節活動策劃方案
- 電工電子技術基礎 第2版 習題答案 周鵬
- 部編版七年級下冊道法期中試卷1
- 知識圖譜-課件
- 百年戰爭簡史
- 2023年托幼機構幼兒園衛生保健人員考試題庫及參考答案
- 2023年IDSA念珠菌病指南中文翻譯
- 天生為鹵人生為鹽 課件
- 中醫護理耳穴壓豆課件
- YS/T 713-2009干式變壓器用鋁帶、箔材
- 阿爾茨海默病康復課件
- 老年人常見病防治與中醫養生課件
- 雨果與《巴黎圣母院》課件
評論
0/150
提交評論