江蘇省鹽城市示范名校2025屆高三下-期中質量評估數學試題試卷_第1頁
江蘇省鹽城市示范名校2025屆高三下-期中質量評估數學試題試卷_第2頁
江蘇省鹽城市示范名校2025屆高三下-期中質量評估數學試題試卷_第3頁
江蘇省鹽城市示范名校2025屆高三下-期中質量評估數學試題試卷_第4頁
江蘇省鹽城市示范名校2025屆高三下-期中質量評估數學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鹽城市示范名校2025屆高三下-期中質量評估數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數的定義域為,命題:,的否定是()A., B.,C., D.,2.年某省將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B. C. D.3.集合的真子集的個數是()A. B. C. D.4.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.75.已知函數,則()A.2 B.3 C.4 D.56.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個單位長度后得到的圖象關于軸對稱;③若在上恰有7個零點,則的取值范圍為;④若在上單調遞增,則的取值范圍為.其中,判斷正確的個數為()A.1 B.2 C.3 D.47.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣128.如圖所示點是拋物線的焦點,點、分別在拋物線及圓的實線部分上運動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.9.已知不重合的平面和直線,則“”的充分不必要條件是()A.內有無數條直線與平行 B.且C.且 D.內的任何直線都與平行10.古希臘數學家畢達哥拉斯在公元前六世紀發現了第一、二個“完全數”6和28,進一步研究發現后續三個“完全數”分別為496,8128,33550336,現將這五個“完全數”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.11.在邊長為1的等邊三角形中,點E是中點,點F是中點,則()A. B. C. D.12.高三珠海一模中,經抽樣分析,全市理科數學成績X近似服從正態分布,且.從中隨機抽取參加此次考試的學生500名,估計理科數學成績不低于110分的學生人數約為()A.40 B.60 C.80 D.100二、填空題:本題共4小題,每小題5分,共20分。13.設實數x,y滿足,則點表示的區域面積為______.14.對定義在上的函數,如果同時滿足以下兩個條件:(1)對任意的總有;(2)當,,時,總有成立.則稱函數稱為G函數.若是定義在上G函數,則實數a的取值范圍為________.15.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序將每個螺栓固定緊,但不能連續固定相鄰的2個螺栓.則不同的固定螺栓方式的種數是________.16.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)己知圓F1:(x+1)1+y1=r1(1≤r≤3),圓F1:(x-1)1+y1=(4-r)1.(1)證明:圓F1與圓F1有公共點,并求公共點的軌跡E的方程;(1)已知點Q(m,0)(m<0),過點E斜率為k(k≠0)的直線與(Ⅰ)中軌跡E相交于M,N兩點,記直線QM的斜率為k1,直線QN的斜率為k1,是否存在實數m使得k(k1+k1)為定值?若存在,求出m的值,若不存在,說明理由.18.(12分)已知函數f(x)=x(1)討論fx(2)當x≥-1時,fx+a19.(12分)在極坐標系中,已知曲線C的方程為(),直線l的方程為.設直線l與曲線C相交于A,B兩點,且,求r的值.20.(12分)已知函數的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數的取值范圍.21.(12分)班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結果)(2)如果隨機抽取的7名同學的數學,物理成績(單位:分)對應如下表:學生序號1234567數學成績60657075858790物理成績70778085908693①若規定85分以上(包括85分)為優秀,從這7名同學中抽取3名同學,記3名同學中數學和物理成績均為優秀的人數為,求的分布列和數學期望;②根據上表數據,求物理成績關于數學成績的線性回歸方程(系數精確到0.01);若班上某位同學的數學成績為96分,預測該同學的物理成績為多少分?附:線性回歸方程,其中,.768381252622.(10分)已知函數(1)當時,求不等式的解集;(2)若函數的值域為A,且,求a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎題.2.B【解析】

甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.3.C【解析】

根據含有個元素的集合,有個子集,有個真子集,計算可得;【詳解】解:集合含有個元素,則集合的真子集有(個),故選:C【點睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎題.4.B【解析】

根據拋物線中過焦點的兩段線段關系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標準方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質及其簡單應用,基本不等式的用法,屬于中檔題.5.A【解析】

根據分段函數直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數計算,意在考查學生的計算能力.6.B【解析】

對函數化簡可得,進而結合三角函數的最值、周期性、單調性、零點、對稱性及平移變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于①,因為,所以,即,故①錯誤;對于②,函數的圖象向右平移個單位長度后得到的函數為,其圖象關于軸對稱,則,解得,故對任意整數,,所以②錯誤;對于③,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故③正確;對于④,因為,且,所以,解得,又,所以,故④正確.故選:B.【點睛】本題考查三角函數的恒等變換,考查三角函數的平移變換、最值、周期性、單調性、零點、對稱性,考查學生的計算求解能力與推理能力,屬于中檔題.7.D【解析】

分別聯立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結果.【詳解】設,聯立則,因為直線經過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數,屬基礎題。8.B【解析】

根據拋物線方程求得焦點坐標和準線方程,結合定義表示出;根據拋物線與圓的位置關系和特點,求得點橫坐標的取值范圍,即可由的周長求得其范圍.【詳解】拋物線,則焦點,準線方程為,根據拋物線定義可得,圓,圓心為,半徑為,點、分別在拋物線及圓的實線部分上運動,解得交點橫坐標為2.點、分別在兩個曲線上,總是平行于軸,因而兩點不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【點睛】本題考查了拋物線定義、方程及幾何性質的簡單應用,圓的幾何性質應用,屬于中檔題.9.B【解析】

根據充分不必要條件和直線和平面,平面和平面的位置關系,依次判斷每個選項得到答案.【詳解】A.內有無數條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內的任何直線都與平行,故,若,則內的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關系,意在考查學生的綜合應用能力.10.B【解析】

推導出基本事件總數,6和28恰好在同一組包含的基本事件個數,由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數,6和28恰好在同一組包含的基本事件個數,∴6和28恰好在同一組的概率.故選:B.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.11.C【解析】

根據平面向量基本定理,用來表示,然后利用數量積公式,簡單計算,可得結果.【詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【點睛】本題考查平面向量基本定理以及數量積公式,掌握公式,細心觀察,屬基礎題.12.D【解析】

由正態分布的性質,根據題意,得到,求出概率,再由題中數據,即可求出結果.【詳解】由題意,成績X近似服從正態分布,則正態分布曲線的對稱軸為,根據正態分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數學成績不低于110分的人數為人,故選:.【點睛】本題考查正態分布的圖象和性質,考查學生分析問題的能力,難度容易.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先畫出滿足條件的平面區域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數x,y滿足表示的平面區域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎題.14.【解析】

由不等式恒成立問題采用分離變量最值法:對任意的恒成立,解得,又在,恒成立,即,所以,從而可得.【詳解】因為是定義在上G函數,所以對任意的總有,則對任意的恒成立,解得,當時,又因為,,時,總有成立,即恒成立,即恒成立,又此時的最小值為,即恒成立,又因為解得.故答案為:【點睛】本題是一道函數新定義題目,考查了不等式恒成立求參數的取值范圍,考查了學生分析理解能力,屬于中檔題.15.60【解析】分析:首先將選定第一個釘,總共有6種方法,假設選定1號,之后分析第二步,第三步等,按照分類加法計數原理,可以求得共有10種方法,利用分步乘法計數原理,求得總共有種方法.詳解:根據題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘的時候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關分類加法計數原理和分步乘法計數原理,在解題的過程中,需要逐個的將對應的過程寫出來,所以利用列舉法將對應的結果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結果.16.【解析】試題分析:根據題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析,(1)存在,【解析】

(1)求出圓和圓的圓心和半徑,通過圓F1與圓F1有公共點求出的范圍,從而根據可得點的軌跡,進而求出方程;(1)過點且斜率為的直線方程為,設,,聯立直線方程和橢圓方程,根據韋達定理以及,,可得,根據其為定值,則有,進而可得結果.【詳解】(1)因為,,所以,因為圓的半徑為,圓的半徑為,又因為,所以,即,所以圓與圓有公共點,設公共點為,因此,所以點的軌跡是以,為焦點的橢圓,所以,,,即軌跡的方程為;(1)過點且斜率為的直線方程為,設,由消去得到,則,,①因為,,所以,將①式代入整理得因為,所以當時,即時,.即存在實數使得.【點睛】本題考查橢圓定理求橢圓方程,考查橢圓中的定值問題,靈活應用韋達定理進行計算是關鍵,并且觀察出取定值的條件也很重要,考查了學生分析能力和計算能力,是中檔題.18.(1)見解析;(2)-∞,1【解析】

(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對a分類討論,即可得出單調性.

(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當x=-1時,0≤-1e+1恒成立.當x>-1時,a≤xe【詳解】解法一:(1)f①當a≤0時,x(-∞-1(-1,+∞)f-0+f(x)↘極小值↗所以f(x)在(-∞,-1)上單調遞減,在(-1,+∞)單調遞增.②當a>0時,f'(x)=0的根為x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,-1),(lna,+∞)上單調遞增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,lna),(-1,+∞)上單調遞增,在綜上:當a≤0時,f(x)在(-∞,-1)上單調遞減,在(-1,+∞)上單調遞增;當0<a<1e時,f(x)在(-∞,lna),自a=1e時,f(x)在當a>1e時,f(x)在(-∞,-1),(ln(2)因為xex-ax-a+1≥0當x=-1時,0≤-1當x>-1時,a≤x令g(x)=xex設h(x)=e因為h'(x)=e即hx=e又因為h0=0,所以g(x)=xex則g(x)min=g(0)=1綜上,a的取值范圍為-∞,1.解法二:(1)同解法一;(2)令g(x)=f(x)+a所以g'當a≤0時,g'(x)≥0,則g(x)在所以g(x)≥g(-1)=-1當0<a≤1時,令h(x)=e因為h'(x)=2ex+x又因為h-1=-a<0,所以h(x)=ex+xexx(-1x(g-0+g(x)↘極小值↗g==-e當a>1時,g(0)=-a+1<0,不滿足題意.綜上,a的取值范圍為-∞,1.【點睛】本題考查了利用導數研究函數的單調性極值與最值、分類討論方法、方程與不等式的解法,考查了推理能力與計算能力,屬于難題.19.【解析】

先將曲線C和直線l的極坐標方程化為直角坐標方程,可得圓心到直線的距離,再由勾股定理,計算即得.【詳解】以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,可得曲線C:()的直角坐標方程為,表示以原點為圓心,半徑為r的圓.由直線l的方程,化簡得,則直線l的直角坐標方程方程為.記圓心到直線l的距離為d,則,又,即,所以.【點睛】本題考查曲線和直線的極坐標方程化為直角坐標方程,是基礎題.20.(1);(2).【解析】

(1)利用定義法求出函數在上單調遞增,由和,求出,求出,運用單調性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調遞增,恒成立,設,利用三角恒等變換化簡,結合恒成立的條件,構造新函數,利用單調性和最值,求出實數的取值范圍.【詳解】(1)設,,所以函數在上單調遞增,又因為和,則,所以得解得,即,故的取值范圍為;(2)由于恒成立,恒成立,設,則,令,則,所以在區間上單調遞增,所以,根據條件,只要,所以.【點睛】本題考查利用定義法求函數的單調性和利用單調性求不等式的解集,考查不等式恒成立問題,還運用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉化思想和解題能力.21.(1)不同的樣本的個數為.(2)①分布列見解析,.②線性回歸方程為.可預測該同學的物理成績為96分.【解析】

(1)按比例抽取即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論