2025年上海理工大附中高三下-第三次統考(期中)數學試題試卷含解析_第1頁
2025年上海理工大附中高三下-第三次統考(期中)數學試題試卷含解析_第2頁
2025年上海理工大附中高三下-第三次統考(期中)數學試題試卷含解析_第3頁
2025年上海理工大附中高三下-第三次統考(期中)數學試題試卷含解析_第4頁
2025年上海理工大附中高三下-第三次統考(期中)數學試題試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025年上海理工大附中高三下-第三次統考(期中)數學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的定義域為()A.或 B.或C. D.2.點是單位圓上不同的三點,線段與線段交于圓內一點M,若,則的最小值為()A. B. C. D.3.中國古代用算籌來進行記數,算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數時,像阿拉伯記數一樣,把各個數位的數碼從左到右排列,但各位數碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.4.已知雙曲線(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線l與雙曲線的右支有且只有一個交點,則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.5.已知函數,,且,則()A.3 B.3或7 C.5 D.5或86.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.57.已知,且,則的值為()A. B. C. D.8.元代數學家朱世杰的數學名著《算術啟蒙》是中國古代代數學的通論,其中關于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,,則輸出的()A.3 B.4 C.5 D.69.若,則函數在區間內單調遞增的概率是()A.B.C.D.10.設是虛數單位,則“復數為純虛數”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件11.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件12.如圖所示的程序框圖,當其運行結果為31時,則圖中判斷框①處應填入的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件則的最小值為__________.14.已知,若的展開式中的系數比x的系數大30,則______.15.已知均為非負實數,且,則的取值范圍為______.16.直線xsinα+y+2=0的傾斜角的取值范圍是________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,記不等式的解集為.(1)求;(2)設,證明:.18.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點,是上異于,的點,.(1)證明:平面平面;(2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.19.(12分)等差數列的前項和為,已知,.(Ⅰ)求數列的通項公式及前項和為;(Ⅱ)設為數列的前項的和,求證:.20.(12分)(1)求曲線和曲線圍成圖形的面積;(2)化簡求值:.21.(12分)2018年反映社會現實的電影《我不是藥神》引起了很大的轟動,治療特種病的創新藥研發成了當務之急.為此,某藥企加大了研發投入,市場上治療一類慢性病的特效藥品的研發費用(百萬元)和銷量(萬盒)的統計數據如下:研發費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關系數精確到0.01,并判斷與的關系是否可用線性回歸方程模型擬合?(規定:時,可用線性回歸方程模型擬合);(2)該藥企準備生產藥品的三類不同的劑型,,,并對其進行兩次檢測,當第一次檢測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設經過兩次檢測后,,三類劑型合格的種類數為,求的數學期望.附:(1)相關系數(2),,,.22.(10分)已知函數.(1)求不等式的解集;(2)若函數的定義域為,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據偶次根式被開方數非負可得出關于的不等式,即可解得函數的定義域.【詳解】由題意可得,解得或.因此,函數的定義域為或.故選:A.本題考查具體函數定義域的求解,考查計算能力,屬于基礎題.2.D【解析】

由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.本題主要考查平面向量數量積的應用,考查基本不等式的應用,屬于中檔題.3.B【解析】

根據題意表示出各位上的數字所對應的算籌即可得答案.【詳解】解:根據題意可得,各個數碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的.故選:.本題主要考查學生的合情推理與演繹推理,屬于基礎題.4.A【解析】

若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率.根據這個結論可以求出雙曲線離心率的取值范圍.【詳解】已知雙曲線的右焦點為,若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,,離心率,,故選:.本題考查雙曲線的性質及其應用,解題時要注意挖掘隱含條件.5.B【解析】

根據函數的對稱軸以及函數值,可得結果.【詳解】函數,若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.本題考查的是三角函數的概念及性質和函數的對稱性問題,屬基礎題6.C【解析】

由,再運用三點共線時和最小,即可求解.【詳解】.故選:C本題考查拋物線的定義,合理轉化是本題的關鍵,注意拋物線的性質的靈活運用,屬于中檔題.7.A【解析】

由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.本題考查三角函數誘導公式、二倍角公式以及兩角差的正切公式的應用,考查學生的基本計算能力,是一道基礎題.8.B【解析】分析:根據流程圖中的可知,每次循環的值應是一個等比數列,公比為;根據流程圖中的可知,每次循環的值應是一個等比數列,公比為,根據每次循環得到的的值的大小決定循環的次數即可.詳解:記執行第次循環時,的值記為有,則有;記執行第次循環時,的值記為有,則有.令,則有,故,故選B.點睛:本題為算法中的循環結構和數列通項的綜合,屬于中檔題,解題時注意流程圖中蘊含的數列關系(比如相鄰項滿足等比數列、等差數列的定義,是否是求數列的前和、前項積等).9.B【解析】函數在區間內單調遞增,,在恒成立,在恒成立,,函數在區間內單調遞增的概率是,故選B.10.D【解析】

結合純虛數的概念,可得,再結合充分條件和必要條件的定義即可判定選項.【詳解】若復數為純虛數,則,所以,若,不妨設,此時復數,不是純虛數,所以“復數為純虛數”是“”的充分不必要條件.故選:D本題考查充分條件和必要條件,考查了純虛數的概念,理解充分必要條件的邏輯關系是解題的關鍵,屬于基礎題.11.B【解析】

先求出滿足的值,然后根據充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.本題考查充分必要條件,掌握充分必要條件的定義是解題基礎.解題時可根據條件與結論中參數的取值范圍進行判斷.12.C【解析】

根據程序框圖的運行,循環算出當時,結束運行,總結分析即可得出答案.【詳解】由題可知,程序框圖的運行結果為31,當時,;當時,;當時,;當時,;當時,.此時輸出.故選:C.本題考查根據程序框圖的循環結構,已知輸出結果求條件框,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

畫出可行域,通過平移基準直線到可行域邊界位置,由此求得目標函數的最小值.【詳解】畫出可行域如下圖所示,由圖可知:可行域是由三點,,構成的三角形及其內部,當直線過點時,取得最小值.故答案為:本小題主要考查利用線性規劃求目標函數的最值,考查數形結合的數學思想方法,屬于基礎題.14.2【解析】

利用二項展開式的通項公式,二項式系數的性質,求得的值.【詳解】展開式通項為:且的展開式中的系數比的系數大,即:解得:(舍去)或本題正確結果:本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.15.【解析】

設,可得的取值范圍,分別利用基本不等式和,把用代換,結合的取值范圍求關于的二次函數的最值即可求解.【詳解】因為,,令,則,因為,當且僅當時等號成立,所以,,即,令則函數的對稱軸為,所以當時函數有最大值為,即.當且,即,或,時取等號;因為,當且僅當時等號成立,所以,令,則函數的對稱軸為,所以當時,函數有最小值為,即,當,且時取等號,所以.故答案為:本題考查基本不等式與二次函數求最值相結合求代數式的取值范圍;考查運算求解能力和知識的綜合運用能力;基本不等式:和的靈活運用是求解本題的關鍵;屬于綜合型、難度大型試題.16.【解析】因為sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關系得傾斜角范圍是.答案:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見解析【解析】

(1)利用零點分段法將表示為分段函數的形式,由此解不等式求得不等式的解集.(2)將不等式坐標因式分解,結合(1)的結論證得不等式成立.【詳解】(1)解:,由,解得,故.(2)證明:因為,所以,,所以,所以.本小題主要考查絕對值不等式的解法,考查不等式的證明,屬于基礎題.18.(1)詳見解析;(2).【解析】

(1)由直徑所對的圓周角為,可知,通過計算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標原點,分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,求出相應點的坐標,求出平面的一個法向量和平面的法向量,利用空間向量數量積運算公式,可以求出二面角的余弦值.【詳解】解:(1)證明:因為半圓弧上的一點,所以.在中,分別為的中點,所以,且.于是在中,,所以為直角三角形,且.因為,,所以.因為,,,所以平面.又平面,所以平面平面.(2)由已知,以為坐標原點,分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,,,.設平面的一個法向量為,則即,取,得.設平面的法向量,則即,取,得.所以,又二面角為銳角,所以二面角的余弦值為.本題考查了利用線面垂直判定面面垂直、利用空間向量數量積求二面角的余弦值問題.19.(Ⅰ),(Ⅱ)見解析【解析】

(Ⅰ)根據等差數列公式直接計算得到答案.(Ⅱ),根據裂項求和法計算得到得到證明.【詳解】(Ⅰ)等差數列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.本題考查了等差數列的基本量的計算,裂項求和,意在考查學生對于數列公式方法的靈活運用.20.(1)(2)【解析】

(1)求曲線和曲線圍成的圖形面積,首先求出兩曲線交點的橫坐標0、1,然后求在區間上的定積分.(2)首先利用二倍角公式及兩角差的余弦公式計算出,然后再整體代入可得;【詳解】解:(1)聯立解得,,所以曲線和曲線圍成的圖形面積.(2)∴本題考查定積分求曲邊形的面積以及三角恒等變換的應用,屬于中檔題.21.(1)0.98;可用線性回歸模型擬合.(2)【解析】

(1)根據題目提供的數據求出,代入相關系數公式求出,根據的大小來確定結果;(2)求出藥品的每類劑型經過兩次檢測后合格的概率,發現它們相同,那么經過兩次檢測后,,三類劑型合格的種類數為,服從二項分布,利用二項分布的期望公式求解即可.【詳解】解:(1)由題意可知,,由公式,,∴與的關系可用線性回歸模型擬合;(2)藥品的每類劑型經過兩次檢測后合格的概率分別為,,,由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論