四川省石室中學(xué)2025屆高考數(shù)學(xué)試題全真模擬密押卷(五)含解析_第1頁
四川省石室中學(xué)2025屆高考數(shù)學(xué)試題全真模擬密押卷(五)含解析_第2頁
四川省石室中學(xué)2025屆高考數(shù)學(xué)試題全真模擬密押卷(五)含解析_第3頁
四川省石室中學(xué)2025屆高考數(shù)學(xué)試題全真模擬密押卷(五)含解析_第4頁
四川省石室中學(xué)2025屆高考數(shù)學(xué)試題全真模擬密押卷(五)含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省石室中學(xué)2025屆高考數(shù)學(xué)試題全真模擬密押卷(五)請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.2.復(fù)數(shù)()A. B. C.0 D.3.函數(shù)的圖象向右平移個(gè)單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的值為()A. B. C.2 D.4.已知復(fù)數(shù)滿足,則的值為()A. B. C. D.25.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.6.已知雙曲線的漸近線方程為,且其右焦點(diǎn)為,則雙曲線的方程為()A. B. C. D.7.設(shè)函數(shù)的定義域?yàn)椋}:,的否定是()A., B.,C., D.,8.記其中表示不大于x的最大整數(shù),若方程在在有7個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍()A. B. C. D.9.若,則下列不等式不能成立的是()A. B. C. D.10.已知銳角滿足則()A. B. C. D.11.在中,在邊上滿足,為的中點(diǎn),則().A. B. C. D.12.已知定義在上的函數(shù),若函數(shù)為偶函數(shù),且對(duì)任意,,都有,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)O為坐標(biāo)原點(diǎn),,若點(diǎn)B(x,y)滿足,則的最大值是__________.14.在長(zhǎng)方體中,,則異面直線與所成角的余弦值為()A. B. C. D.15.在中,內(nèi)角的對(duì)邊分別為,已知,則的面積為___________.16.已知、為正實(shí)數(shù),直線截圓所得的弦長(zhǎng)為,則的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù))(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導(dǎo)數(shù)相等,證明:;(3)當(dāng)時(shí),證明:對(duì)于任意,若,則直線與曲線有唯一公共點(diǎn)(注:當(dāng)時(shí),直線與曲線的交點(diǎn)在y軸兩側(cè)).18.(12分)已知點(diǎn),直線與拋物線交于不同兩點(diǎn)、,直線、與拋物線的另一交點(diǎn)分別為兩點(diǎn)、,連接,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為點(diǎn),連接、.(1)證明:;(2)若的面積,求的取值范圍.19.(12分)設(shè)函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時(shí),若,,求證:.20.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點(diǎn).(1)證明:;(2)求直線與平面所成角的正弦值.21.(12分)已知公比為正數(shù)的等比數(shù)列的前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)這次新冠肺炎疫情,是新中國(guó)成立以來在我國(guó)發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長(zhǎng),從磨難中奮起.在這次疫情中,全國(guó)人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開了對(duì)這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計(jì)中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國(guó)累計(jì)報(bào)告確診病例數(shù)量(單位:萬人)之間的關(guān)系如下表:日期1234567全國(guó)累計(jì)報(bào)告確診病例數(shù)量(萬人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出.【詳解】∵,∴.故選:A.本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題.2.C【解析】略3.C【解析】由函數(shù)的圖象向右平移個(gè)單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時(shí),取得最大值,即,,,當(dāng)時(shí),解得,故選C.點(diǎn)睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運(yùn)用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時(shí),取得最大值,求解可得實(shí)數(shù)的值.4.C【解析】

由復(fù)數(shù)的除法運(yùn)算整理已知求得復(fù)數(shù)z,進(jìn)而求得其模.【詳解】因?yàn)?,所以故選:C本題考查復(fù)數(shù)的除法運(yùn)算與求復(fù)數(shù)的模,屬于基礎(chǔ)題.5.D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對(duì)流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項(xiàng).6.B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點(diǎn):雙曲線方程.7.D【解析】

根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因?yàn)椋海侨Q命題,所以其否定是特稱命題,即,.故選:D本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.8.D【解析】

做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個(gè)交點(diǎn),而函數(shù)在上有3個(gè)交點(diǎn),則在上有4個(gè)不同的交點(diǎn),數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個(gè)不同的實(shí)數(shù)根,則在上有4個(gè)不同的實(shí)數(shù)根,當(dāng)直線經(jīng)過時(shí),;當(dāng)直線經(jīng)過時(shí),,可知當(dāng)時(shí),直線與的圖象在上有4個(gè)交點(diǎn),即方程,在上有4個(gè)不同的實(shí)數(shù)根.故選:D.本題考查方程根的個(gè)數(shù)求參數(shù),利用函數(shù)零點(diǎn)和方程之間的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)是解題的關(guān)鍵,運(yùn)用數(shù)形結(jié)合是解決函數(shù)零點(diǎn)問題的基本思想,屬于中檔題.9.B【解析】

根據(jù)不等式的性質(zhì)對(duì)選項(xiàng)逐一判斷即可.【詳解】選項(xiàng)A:由于,即,,所以,所以,所以成立;選項(xiàng)B:由于,即,所以,所以,所以不成立;選項(xiàng)C:由于,所以,所以,所以成立;選項(xiàng)D:由于,所以,所以,所以,所以成立.故選:B.本題考查不等關(guān)系和不等式,屬于基礎(chǔ)題.10.C【解析】

利用代入計(jì)算即可.【詳解】由已知,,因?yàn)殇J角,所以,,即.故選:C.本題考查二倍角的正弦、余弦公式的應(yīng)用,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.11.B【解析】

由,可得,,再將代入即可.【詳解】因?yàn)?,所以,?故選:B.本題考查平面向量的線性運(yùn)算性質(zhì)以及平面向量基本定理的應(yīng)用,是一道基礎(chǔ)題.12.A【解析】

根據(jù)題意,分析可得函數(shù)的圖象關(guān)于對(duì)稱且在上為減函數(shù),則不等式等價(jià)于,解得的取值范圍,即可得答案.【詳解】解:因?yàn)楹瘮?shù)為偶函數(shù),所以函數(shù)的圖象關(guān)于對(duì)稱,因?yàn)閷?duì)任意,,都有,所以函數(shù)在上為減函數(shù),則,解得:.即實(shí)數(shù)的取值范圍是.故選:A.本題考查函數(shù)的對(duì)稱性與單調(diào)性的綜合應(yīng)用,涉及不等式的解法,屬于綜合題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】,可行域如圖,直線與圓相切時(shí)取最大值,由14.C【解析】

根據(jù)確定是異面直線與所成的角,利用余弦定理計(jì)算得到答案.【詳解】由題意可得.因?yàn)?,所以是異面直線與所成的角,記為,故.故選:.本題考查了異面直線夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.15.【解析】

由余弦定理先算出c,再利用面積公式計(jì)算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:本題考查利用余弦定理求解三角形的面積,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.16.【解析】

先根據(jù)弦長(zhǎng),半徑,弦心距之間的關(guān)系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長(zhǎng)為可得,整理得,解得或(舍去),令,又,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則.故答案為:.本題考查直線和圓的位置關(guān)系,考核基本不等式求最值,關(guān)鍵是對(duì)目標(biāo)式進(jìn)行變形,變成能用基本不等式求最值的形式,也可用換元法進(jìn)行變形,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析;(3)見解析【解析】

(1)需滿足恒成立,只需即可;(2)根據(jù)的單調(diào)性,構(gòu)造新函數(shù),并令,根據(jù)的單調(diào)性即可得證;(3)將問題轉(zhuǎn)化為證明有唯一實(shí)數(shù)解,對(duì)求導(dǎo),判斷其單調(diào)性,結(jié)合題目條件與不等式的放縮,即可得證.【詳解】;令,則恒成立;,;的取值范圍是;(2)證明:由(1)知,在上單調(diào)遞減,在上單調(diào)遞增;;令,;則;令,則;;;(3)證明:,,要證明有唯一實(shí)數(shù)解;當(dāng)時(shí),;當(dāng)時(shí),;即對(duì)于任意實(shí)數(shù),一定有解;;當(dāng)時(shí),有兩個(gè)極值點(diǎn);函數(shù)在,,上單調(diào)遞增,在上單調(diào)遞減;又;只需,在時(shí)恒成立;只需;令,其中一個(gè)正解是;,;單調(diào)遞增,,(1);;;綜上得證.本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)證明不等式,考查了轉(zhuǎn)化思想、不等式的放縮,屬難題.18.(1)見解析;(2).【解析】

(1)設(shè)點(diǎn)、,求出直線、的方程,與拋物線的方程聯(lián)立,求出點(diǎn)、的坐標(biāo),利用直線、的斜率相等證明出;(2)設(shè)點(diǎn)到直線、的距離分別為、,求出,利用相似得出,可得出的邊上的高,并利用弦長(zhǎng)公式計(jì)算出,即可得出關(guān)于的表達(dá)式,結(jié)合不等式可解出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè)點(diǎn)、,則,直線的方程為:,由,消去并整理得,由韋達(dá)定理可知,,,代入直線的方程,得,解得,同理,可得,,,,代入得,因此,;(2)設(shè)點(diǎn)到直線、的距離分別為、,則,由(1)知,,,,,,同理,得,,由,整理得,由韋達(dá)定理得,,,得,設(shè)點(diǎn)到直線的高為,則,,,,解得,因此,實(shí)數(shù)的取值范圍是.本題考查直線與直線平行的證明,考查實(shí)數(shù)的取值范圍的求法,考查拋物線、直線方程、韋達(dá)定理、弦長(zhǎng)公式、直線的斜率等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,是難題.19.(1)證明見解析;(2)證明見解析.【解析】

(1)首先對(duì)函數(shù)求導(dǎo),再根據(jù)參數(shù)的取值,討論的正負(fù),即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),討論新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的單調(diào)性證明.【詳解】(1),令,則,令得,當(dāng)時(shí),則在單調(diào)遞減,當(dāng)時(shí),則在單調(diào)遞增,所以,當(dāng)時(shí),,即,則在上單調(diào)遞增,當(dāng)時(shí),,易知當(dāng)時(shí),,當(dāng)時(shí),,由零點(diǎn)存在性定理知,,不妨設(shè),使得,當(dāng)時(shí),,即,當(dāng)時(shí),,即,當(dāng)時(shí),,即,所以在和上單調(diào)遞增,在單調(diào)遞減;(2)證明:構(gòu)造函數(shù),,,,整理得,,(當(dāng)時(shí)等號(hào)成立),所以在上單調(diào)遞增,則,所以在上單調(diào)遞增,,這里不妨設(shè),欲證,即證由(1)知時(shí),在上單調(diào)遞增,則需證,由已知有,只需證,即證,由在上單調(diào)遞增,且時(shí),有,故成立,從而得證.本題主要考查了導(dǎo)數(shù)含參分類討論單調(diào)性,借助構(gòu)造函數(shù)和單調(diào)性證明不等式,屬于難題.20.(1)見證明;(2)【解析】

(1)設(shè)是的中點(diǎn),連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個(gè)點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點(diǎn),連接、,是的中點(diǎn),,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過點(diǎn)作,垂足為,平面,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個(gè)法向量,則,,令,則,,,直線與平面所成角的正弦值為.本題考查了線面垂直,線線垂直,利用空間直角坐標(biāo)系解決線面夾角問題,意在考查學(xué)生的空間想象能力和計(jì)算能力.21.(1)(2)【解析】

(1)判斷公比不為1,運(yùn)用等比數(shù)列的求和公式,解方程可得公比,進(jìn)而得到所求通項(xiàng)公式;(2)求得,運(yùn)用數(shù)列的錯(cuò)位相減法求和,以及等比數(shù)列的求和公式,計(jì)算可得所求和.【詳解】解:(1)設(shè)公比為正數(shù)的等比數(shù)列的前項(xiàng)和為,且,,可得時(shí),,不成立;當(dāng)時(shí),,即,解得(舍去),則;(2),前項(xiàng)和,,兩式相減可得,化簡(jiǎn)可得.本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的錯(cuò)位相減法求和,考查方程思想和運(yùn)算能力,屬于中檔題.22.(1)可以用線性回歸模型擬合與的關(guān)系;(2),預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論