




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省郴州市2024屆中考試題猜想數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一元二次方程的根是()A. B.C. D.2.下列運算正確的是()A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2?(﹣a)3=﹣a53.下列圖形中,不是中心對稱圖形的是()A.平行四邊形 B.圓 C.等邊三角形 D.正六邊形4.已知一元二次方程的兩個實數根分別是x1、x2則x12x2x1x22的值為()A.-6 B.-3 C.3 D.65.益陽市高新區某廠今年新招聘一批員工,他們中不同文化程度的人數見下表:文化程度高中大專本科碩士博士人數9172095關于這組文化程度的人數數據,以下說法正確的是:()A.眾數是20 B.中位數是17 C.平均數是12 D.方差是266.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是A.5 B.6 C.7 D.87.若關于,的二元一次方程組的解也是二元一次方程的解,則的值為A. B. C. D.8.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學記數法表示應為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1059.某校九年級一班全體學生2017年中招理化生實驗操作考試的成績統計如下表,根據表中的信息判斷,下列結論中錯誤的是()成績(分)3029282618人數(人)324211A.該班共有40名學生B.該班學生這次考試成績的平均數為29.4分C.該班學生這次考試成績的眾數為30分D.該班學生這次考試成績的中位數為28分10.在中,,,下列結論中,正確的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.關于x的一元二次方程x2﹣2kx+k2﹣k=0的兩個實數根分別是x1、x2,且x12+x22=4,則x12﹣x1x2+x22的值是_____.12.在△ABC中,∠C=90°,sinA=,BC=4,則AB值是_____.13.如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點D在邊BC上,以AD為折痕將△ABD折疊得到△AB′D,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是_______.14.如圖,在△ABC中,AB=2,BC=3.5,∠B=60°,將△ABC繞點A按順時針旋轉一定角度得到△ADE,當點B的對應點D恰好落在BC邊上時,則CD的長為_____.15.若順次連接四邊形ABCD四邊中點所得的四邊形是矩形,則原四邊形的對角線AC、BD所滿足的條件是_____.16.如圖,已知是的高線,且,,則_________.17.若函數y=mx2+2x+1的圖象與x軸只有一個公共點,則常數m的值是.三、解答題(共7小題,滿分69分)18.(10分)如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.(1)求證:AE=BF;(2)連接GB,EF,求證:GB∥EF;(3)若AE=1,EB=2,求DG的長.19.(5分)如圖,△ABC內接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點E,與過點C的⊙O的切線交于點D.若AC=4,BC=2,求OE的長.試判斷∠A與∠CDE的數量關系,并說明理由.20.(8分)中央電視臺的“中國詩詞大賽”節目文化品位高,內容豐富.某班模擬開展“中國詩詞大賽”比賽,對全班同學成績進行統計后分為“A優秀”、“B一般”、“C較差”、“D良好”四個等級,并根據成績繪制成如下兩幅不完整的統計圖.請結合統計圖中的信息,回答下列問題:(1)本班有多少同學優秀?(2)通過計算補全條形統計圖.(3)學校預全面推廣這個比賽提升學生的文化素養,估計該校3000人有多少人成績良好?21.(10分)如圖,一只螞蟻從點A沿數軸向右直爬2個單位到達點B,點A表示﹣,設點B所表示的數為m.求m的值;求|m﹣1|+(m+6)0的值.22.(10分)旋轉變換是解決數學問題中一種重要的思想方法,通過旋轉變換可以將分散的條件集中到一起,從而方便解決問題.已知,△ABC中,AB=AC,∠BAC=α,點D、E在邊BC上,且∠DAE=α.(1)如圖1,當α=60°時,將△AEC繞點A順時針旋轉60°到△AFB的位置,連接DF,①求∠DAF的度數;②求證:△ADE≌△ADF;(2)如圖2,當α=90°時,猜想BD、DE、CE的數量關系,并說明理由;(3)如圖3,當α=120°,BD=4,CE=5時,請直接寫出DE的長為.23.(12分)如圖,圖①是某電腦液晶顯示器的側面圖,顯示屏AO可以繞點O旋轉一定的角度.研究表明:顯示屏頂端A與底座B的連線AB與水平線BC垂直時(如圖②),人觀看屏幕最舒適.此時測得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的長度.(結果精確到0.1cm)24.(14分)如圖1,在平面直角坐標系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點A(1,0)和點D(﹣4,5),并與y軸交于點C,拋物線的對稱軸為直線x=﹣1,且拋物線與x軸交于另一點B.(1)求該拋物線的函數表達式;(2)若點E是直線下方拋物線上的一個動點,求出△ACE面積的最大值;(3)如圖2,若點M是直線x=﹣1的一點,點N在拋物線上,以點A,D,M,N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點M的坐標;若不能,請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】試題分析:此題考察一元二次方程的解法,觀察發現可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點:一元二次方程的解法——因式分解法——提公因式法.2、D【解析】【分析】根據合并同類項,冪的乘方,同底數冪的乘法的計算法則解答.【詳解】A、2a﹣a=a,故本選項錯誤;B、2a與b不是同類項,不能合并,故本選項錯誤;C、(a4)3=a12,故本選項錯誤;D、(﹣a)2?(﹣a)3=﹣a5,故本選項正確,故選D.【點睛】本題考查了合并同類項、冪的乘方、同底數冪的乘法,熟練掌握各運算的運算法則是解題的關鍵.3、C【解析】
根據中心對稱圖形的定義依次判斷各項即可解答.【詳解】選項A、平行四邊形是中心對稱圖形;選項B、圓是中心對稱圖形;選項C、等邊三角形不是中心對稱圖形;選項D、正六邊形是中心對稱圖形;故選C.【點睛】本題考查了中心對稱圖形的判定,熟知中心對稱圖形的定義是解決問題的關鍵.4、B【解析】
根據根與系數的關系得到x1+x2=1,x1?x2=﹣1,再把x12x2+x1x22變形為x1?x2(x1+x2),然后利用整體代入的方法計算即可.【詳解】根據題意得:x1+x2=1,x1?x2=﹣1,所以原式=x1?x2(x1+x2)=﹣1×1=-1.故選B.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數的關系:若方程兩個為x1,x2,則x1+x2,x1?x2.5、C【解析】
根據眾數、中位數、平均數以及方差的概念求解.【詳解】A、這組數據中9出現的次數最多,眾數為9,故本選項錯誤;B、因為共有5組,所以第3組的人數為中位數,即9是中位數,故本選項錯誤;C、平均數==12,故本選項正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項錯誤.故選C.【點睛】本題考查了中位數、平均數、眾數的知識,解答本題的關鍵是掌握各知識點的概念.6、B【解析】
根據垂徑定理求出AD,根據勾股定理列式求出半徑,根據三角形中位線定理計算即可.【詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B【點睛】本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關鍵7、B【解析】
將k看做已知數求出用k表示的x與y,代入2x+3y=6中計算即可得到k的值.【詳解】解:,①②得:,即,將代入①得:,即,將,代入得:,解得:.故選:.【點睛】此題考查了二元一次方程組的解,以及二元一次方程的解,方程的解即為能使方程左右兩邊成立的未知數的值.8、C【解析】試題分析:28000=1.1×1.故選C.考點:科學記數法—表示較大的數.9、D【解析】A.∵32+4+2+1+1=40(人),故A正確;B.∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正確;C.∵成績是30分的人有32人,最多,故C正確;D.該班學生這次考試成績的中位數為30分,故D錯誤;10、C【解析】
直接利用銳角三角函數關系分別計算得出答案.【詳解】∵,,∴,∴,故選項A,B錯誤,∵,∴,故選項C正確;選項D錯誤.故選C.【點睛】此題主要考查了銳角三角函數關系,熟練掌握銳角三角函數關系是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】【分析】根據根與系數的關系結合x1+x2=x1?x2可得出關于k的一元二次方程,解之即可得出k的值,再根據方程有實數根結合根的判別式即可得出關于k的一元二次不等式,解之即可得出k的取值范圍,從而可確定k的值.【詳解】∵x2﹣2kx+k2﹣k=0的兩個實數根分別是x1、x2,∴x1+x2=2k,x1?x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1?x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案為:1.【點睛】本題考查了根的判別式以及根與系數的關系,熟練掌握“當一元二次方程有實數根時,根的判別式△≥0”是解題的關鍵.12、6【解析】
根據正弦函數的定義得出sinA=,即,即可得出AB的值.【詳解】∵sinA=,即,∴AB=1,故答案為1.【點睛】本題考查了解直角三角形,熟練掌握正弦函數的定義是解題的關鍵.13、5或1.【解析】
先依據勾股定理求得AB的長,然后由翻折的性質可知:AB′=5,DB=DB′,接下來分為∠B′DE=90°和∠B′ED=90°,兩種情況畫出圖形,設DB=DB′=x,然后依據勾股定理列出關于x的方程求解即可.【詳解】∵Rt△ABC紙片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD為折痕△ABD折疊得到△AB′D,∴BD=DB′,AB′=AB=5.如圖1所示:當∠B′DE=90°時,過點B′作B′F⊥AF,垂足為F.設BD=DB′=x,則AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如圖5所示:當∠B′ED=90°時,C與點E重合.∵AB′=5,AC=6,∴B′E=5.設BD=DB′=x,則CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.綜上所述,BD的長為5或1.14、1.1.【解析】分析:由將△ABC繞點A按順時針旋轉一定角度得到△ADE,當點B的對應點D恰好落在BC邊上,可得AD=AB,又由∠B=60°,可證得△ABD是等邊三角形,繼而可得BD=AB=2,則可求得答案.詳解:由旋轉的性質可得:AD=AB,∵∠B=60°,∴△ABD是等邊三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案為:1.1.點睛:此題考查了旋轉的性質以及等邊三角形的判定與性質.此題比較簡單,注意掌握旋轉前后圖形的對應關系,注意數形結合思想的應用.15、AC⊥BD【解析】
根據題意畫出相應的圖形,如圖所示,由四邊形EFGH為矩形,根據矩形的四個角為直角得到∠FEH=90°,又EF為三角形ABD的中位線,根據中位線定理得到EF與DB平行,根據兩直線平行,同旁內角互補得到∠EMO=90°,同理根據三角形中位線定理得到EH與AC平行,再根據兩直線平行,同旁內角互補得到∠AOD=90°,根據垂直定義得到AC與BD垂直.【詳解】∵四邊形EFGH是矩形,∴∠FEH=90°,又∵點E、F、分別是AD、AB、各邊的中點,∴EF是三角形ABD的中位線,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵點E、H分別是AD、CD各邊的中點,∴EH是三角形ACD的中位線,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案為:AC⊥BD.【點睛】此題考查了矩形的性質,三角形的中位線定理,以及平行線的性質.根據題意畫出圖形并熟練掌握矩形性質及三角形中位線定理是解題關鍵.16、4cm【解析】
根據三角形的高線的定義得到,根據直角三角形的性質即可得到結論.【詳解】解:∵是的高線,∴,∵,,∴.故答案為:4cm.【點睛】本題考查了三角形的角平分線、中線、高線,含30°角的直角三角形,熟練掌握直角三角形的性質是解題的關鍵.17、0或1【解析】分析:需要分類討論:①若m=0,則函數y=2x+1是一次函數,與x軸只有一個交點;②若m≠0,則函數y=mx2+2x+1是二次函數,根據題意得:△=4﹣4m=0,解得:m=1。∴當m=0或m=1時,函數y=mx2+2x+1的圖象與x軸只有一個公共點。三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)詳見解析;(3)910【解析】(1)連接BD,由三角形ABC為等腰直角三角形,求出∠A與∠C的度數,根據AB為圓的直徑,利用圓周角定理得到∠ADB為直角,即BD垂直于AC,利用直角三角形斜邊上的中線等于斜邊的一半,得到AD=DC=BD=12(2)連接EF,BG,由三角形AED與三角形BFD全等,得到ED=FD,進而得到三角形DEF為等腰直角三角形,利用圓周角定理及等腰直角三角形性質得到一對同位角相等,利用同位角相等兩直線平行即可得證;(3)由全等三角形對應邊相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的長,利用銳角三角形函數定義求出DE的長,利用兩對角相等的三角形相似得到三角形AED與三角形GEB相似,由相似得比例,求出GE的長,由GE+ED求出GD的長即可.(1)證明:連接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB為圓O的直徑,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,在△AED和△BFD中,∠A=∠FBD,AD=BD,∠EDA=∠FDB,∴△AED≌△BFD(ASA),∴AE=BF;(2)證明:連接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根據勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF=22∵△DEF為等腰直角三角形,∠EDF=90°,∴cos∠DEF=DEEF∵EF=5,∴DE=5×22∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴GEAE∴102?GE=2,即GE=2則GD=GE+ED=91019、(1);(2)∠CDE=2∠A.【解析】
(1)在Rt△ABC中,由勾股定理得到AB的長,從而得到半徑AO.再由△AOE∽△ACB,得到OE的長;(2)連結OC,得到∠1=∠A,再證∠3=∠CDE,從而得到結論.【詳解】(1)∵AB是⊙O的直徑,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB==,∴AO=AB=.∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴OE==.(2)∠CDE=2∠A.理由如下:連結OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考點:切線的性質;探究型;和差倍分.20、(1)本班有4名同學優秀;(2)補圖見解析;(3)1500人.【解析】
(1)根據統計圖即可得出結論;(2)先計算出優秀的學生,再補齊統計圖即可;(3)根據圖2的數值計算即可得出結論.【詳解】(1)本班有學生:20÷50%=40(名),本班優秀的學生有:40﹣40×30%﹣20﹣4=4(名),答:本班有4名同學優秀;(2)成績一般的學生有:40×30%=12(名),成績優秀的有4名同學,補全的條形統計圖,如圖所示;(3)3000×50%=1500(名),答:該校3000人有1500人成績良好.【點睛】本題考查了條形統計圖與扇形統計圖,解題的關鍵是熟練的掌握條形統計圖與扇形統計圖的知識點.21、(1)2-;(2)【解析】試題分析:點表示向右直爬2個單位到達點,點表示的數為把的值代入,對式子進行化簡即可.試題解析:由題意點和點的距離為,其點的坐標為因此點坐標把的值代入得:22、(1)①30°②見解析(2)BD2+CE2=DE2(3)【解析】
(1)①利用旋轉的性質得出∠FAB=∠CAE,再用角的和即可得出結論;②利用SAS判斷出△ADE≌△ADF,即可得出結論;(2)先判斷出BF=CE,∠ABF=∠ACB,再判斷出∠DBF=90°,即可得出結論;(3)同(2)的方法判斷出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出結論.【詳解】解:(1)①由旋轉得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋轉知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如圖2,將△AEC繞點A順時針旋轉90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根據勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如圖3,將△AEC繞點A順時針旋轉90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,過點F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴,∵BD=4,∴DM=BD﹣BM=,根據勾股定理得,,∴DE=DF=,故答案為.【點睛】此題是幾何變換綜合題,主要考查了旋轉的性質,全等三角形的判定和性質,勾股定理,構造全等三角形和直角三角形是解本題的關鍵.23、37【解析】試題分析:過點作交于點.構造直角三角形,在中,計算出,在中,計算出.試題解析:如圖所示:過點作交于點.
在中,
又∵在中,
答:的長度為24、(1)y=x2+2x﹣3;(2);(3)詳見解析.【解析】試題分析:(1)先利用拋物線的對稱
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國紡織品服裝市場調查研究報告
- 2025年中國蓋形開瓶器市場調查研究報告
- 2025年中國電腦桌輪市場調查研究報告
- 辦公裝修工程合同范本
- 行業數據:中國三溴新戊醇市場現狀研究分析與發展前景預測報告
- 工業數字化人才培養創新模式與實踐路徑
- 腹膜透析居家護理健康教育
- 水產品加工質量管理考核試卷
- 電氣機械設備安裝與運行指導考核試卷
- 木材的生產和加工過程考核試卷
- Improve6西格瑪改善階段綠帶教材
- 預防便秘的健康宣教內容
- 2024年蜀道集團招聘筆試參考題庫含答案解析
- 初中語文九年級下冊第四單元作業設計單元質量檢測作業
- 2022輔警考試《道路交通安全法》基礎知識題庫(帶答案)
- 液壓仿真技術的現狀及發展趨勢
- nrf2and通路在藥物治療中的作用
- 高考語文復習:詩歌語言鑒賞
- 泌尿外科常見疾病診療指南
- 學校開展“躺平式”教師專項整治工作實施方案心得體會2篇
- 急救物品藥品管理制度-課件
評論
0/150
提交評論