湖南省雙牌縣重點中學2023-2024學年中考數學仿真試卷含解析_第1頁
湖南省雙牌縣重點中學2023-2024學年中考數學仿真試卷含解析_第2頁
湖南省雙牌縣重點中學2023-2024學年中考數學仿真試卷含解析_第3頁
湖南省雙牌縣重點中學2023-2024學年中考數學仿真試卷含解析_第4頁
湖南省雙牌縣重點中學2023-2024學年中考數學仿真試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省雙牌縣重點中學2023-2024學年中考數學仿真試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.函數y=中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣22.如圖,直線m∥n,直角三角板ABC的頂點A在直線m上,則∠α的余角等于()A.19° B.38° C.42° D.52°3.如圖,已知△ABC中,∠ABC=45°,F是高AD和BE的交點,CD=4,則線段DF的長度為()A. B.4 C. D.4.如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①3a+b<0;②-1≤a≤-23;③對于任意實數m,a+b≥am2+bm總成立;④關于x的方程ax2A.1個B.2個C.3個D.4個5.下列計算正確的是()A.﹣= B.=±2C.a6÷a2=a3 D.(﹣a2)3=﹣a66.下列實數為無理數的是()A.-5 B. C.0 D.π7.在函數y=中,自變量x的取值范圍是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠18.已知一次函數且隨的增大而增大,那么它的圖象不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如圖,在4×4正方形網格中,黑色部分的圖形構成一個軸對稱圖形,現在任意選取一個白色的小正方形并涂黑,使黑色部分的圖形仍然構成一個軸對稱圖形的概率是()A. B. C. D.10.若關于的一元二次方程x(x+1)+ax=0有兩個相等的實數根,則實數a的值為()A. B.1 C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.A、B兩地相距20km,甲乙兩人沿同一條路線從A地到B地.甲先出發,勻速行駛,甲出發1小時后乙再出發,乙以2km/h的速度度勻速行駛1小時后提高速度并繼續勻速行駛,結果比甲提前到達.甲、乙兩人離開A地的距離y(km)與時間t(h)的關系如圖所示,則甲出發_____小時后和乙相遇.12.如圖,把Rt△ABC放在直角坐標系內,其中∠CAB=90°,BC=5,點A,B的坐標分別為(﹣1,0),(﹣4,0),將△ABC沿x軸向左平移,當點C落在直線y=﹣2x﹣6上時,則點C沿x軸向左平移了_____個單位長度.13.函數中,自變量的取值范圍是______14.ABCD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發,點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動,P、Q兩點從出發開始到__________秒時,點P和點Q的距離是10cm.15.我國明代數學家程大位的名著《直指算法統宗》里有一道著名算題:“一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾丁?”意思是:有100個和尚分100個饅頭,如果大和尚一人分3個,小和尚3人分1個,正好分完,試問大、小和尚各幾人?設大、小和尚各有x,y人,則可以列方程組__________.16.把球放在長方體紙盒內,球的一部分露出盒外,其截面如圖,已知EF=CD=80cm,則截面圓的半徑為cm.三、解答題(共8題,共72分)17.(8分)已知:如圖,點A,F,C,D在同一直線上,AF=DC,AB∥DE,AB=DE,連接BC,BF,CE.求證:四邊形BCEF是平行四邊形.18.(8分)(1)計算:()﹣3×[﹣()3]﹣4cos30°+;(2)解方程:x(x﹣4)=2x﹣819.(8分)如圖,∠BCD=90°,且BC=DC,直線PQ經過點D.設∠PDC=α(45°<α<135°),BA⊥PQ于點A,將射線CA繞點C按逆時針方向旋轉90°,與直線PQ交于點E.當α=125°時,∠ABC=°;求證:AC=CE;若△ABC的外心在其內部,直接寫出α的取值范圍.20.(8分)如圖,AD是△ABC的中線,AD=12,AB=13,BC=10,求AC長.21.(8分)如圖,AB為☉O的直徑,CD與☉O相切于點E,交AB的延長線于點D,連接BE,過點O作OC∥BE,交☉O于點F,交切線于點C,連接AC.(1)求證:AC是☉O的切線;(2)連接EF,當∠D=°時,四邊形FOBE是菱形.22.(10分)如圖,建筑物AB的高為6cm,在其正東方向有個通信塔CD,在它們之間的地面點M(B,M,D三點在一條直線上)處測得建筑物頂端A、塔項C的仰角分別為37°和60°,在A處測得塔頂C的仰角為30°,則通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精確到0.1m)23.(12分)已知AC=DC,AC⊥DC,直線MN經過點A,作DB⊥MN,垂足為B,連接CB.(1)直接寫出∠D與∠MAC之間的數量關系;(2)①如圖1,猜想AB,BD與BC之間的數量關系,并說明理由;②如圖2,直接寫出AB,BD與BC之間的數量關系;(3)在MN繞點A旋轉的過程中,當∠BCD=30°,BD=時,直接寫出BC的值.24.閱讀材料:各類方程的解法求解一元一次方程,根據等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由于“去分母”可能產生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數學思想轉化,把未知轉化為已知.用“轉化”的數學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.問題:方程x3+x2-2x=0的解是x1=0,x2=,x3=;拓展:用“轉化”思想求方程的解;應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:由分式有意義的條件得出x+1≠0,解得x≠﹣1.故選D.點睛:本題考查了函數中自變量的取值范圍、分式有意義的條件;由分式有意義得出不等式是解決問題的關鍵.2、D【解析】試題分析:過C作CD∥直線m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,則∠a的余角是52°.故選D.考點:平行線的性質;余角和補角.3、B【解析】

求出AD=BD,根據∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根據ASA證△FBD≌△CAD,推出CD=DF即可.【詳解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故選:B.【點睛】此題主要考查了全等三角形的判定,關鍵是找出能使三角形全等的條件.4、D【解析】

利用拋物線開口方向得到a<0,再由拋物線的對稱軸方程得到b=-2a,則3a+b=a,于是可對①進行判斷;利用2≤c≤3和c=-3a可對②進行判斷;利用二次函數的性質可對③進行判斷;根據拋物線y=ax2+bx+c與直線y=n-1有兩個交點可對④進行判斷.【詳解】∵拋物線開口向下,∴a<0,而拋物線的對稱軸為直線x=-b2a∴3a+b=3a-2a=a<0,所以①正確;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23∵拋物線的頂點坐標(1,n),∴x=1時,二次函數值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正確;∵拋物線的頂點坐標(1,n),∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,∴關于x的方程ax2+bx+c=n-1有兩個不相等的實數根,所以④正確.故選D.【點睛】本題考查了二次函數圖象與系數的關系:二次項系數a決定拋物線的開口方向和大小.當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.5、D【解析】

根據二次根式的運算法則,同類二次根式的判斷,開算術平方根,同底數冪的除法及冪的乘方運算.【詳解】A.不是同類二次根式,不能合并,故A選項錯誤;B.=2≠±2,故B選項錯誤;C.

a6÷a2=a4≠a3,故C選項錯誤;D.

(?a2)3=?a6,故D選項正確.故選D.【點睛】本題主要考查了二次根式的運算法則,開算術平方根,同底數冪的除法及冪的乘方運算,熟記法則是解題的關鍵.6、D【解析】

無理數就是無限不循環小數.理解無理數的概念,一定要同時理解有理數的概念,有理數是整數與分數的統稱.即有限小數和無限循環小數是有理數,而無限不循環小數是無理數.由此即可判定選擇項.【詳解】A、﹣5是整數,是有理數,選項錯誤;B、是分數,是有理數,選項錯誤;C、0是整數,是有理數,選項錯誤;D、π是無理數,選項正確.故選D.【點睛】此題主要考查了無理數的定義,其中初中范圍內學習的無理數有:π,2π等;開方開不盡的數;以及像0.1010010001…,等有這樣規律的數.7、C【解析】

根據分式和二次根式有意義的條件進行計算即可.【詳解】由題意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范圍是x≥2且x≠2.故選C.【點睛】本題考查了函數自變量的取值范圍問題,掌握分式和二次根式有意義的條件是解題的關鍵.8、B【解析】

根據一次函數的性質:k>0,y隨x的增大而增大;k<0,y隨x的增大而減小,進行解答即可.【詳解】解:∵一次函數y=kx-3且y隨x的增大而增大,

∴它的圖象經過一、三、四象限,

∴不經過第二象限,

故選:B.【點睛】本題考查了一次函數的性質,掌握一次函數所經過的象限與k、b的值有關是解題的關鍵.9、B【解析】解:∵根據軸對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合,白色的小正方形有13個,而能構成一個軸對稱圖形的有4個情況,∴使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是:.故選B.10、A【解析】【分析】整理成一般式后,根據方程有兩個相等的實數根,可得△=0,得到關于a的方程,解方程即可得.【詳解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有兩個相等的實數根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故選A.【點睛】本題考查一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

由圖象得出解析式后聯立方程組解答即可.【詳解】由圖象可得:y甲=4t(0≤t≤5);y乙=;由方程組,解得t=.故答案為.【點睛】此題考查一次函數的應用,關鍵是由圖象得出解析式解答.12、1【解析】

先根據勾股定理求得AC的長,從而得到C點坐標,然后根據平移的性質,將C點縱軸代入直線解析式求解即可得到答案.【詳解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC==1,∴點C的坐標為(﹣1,1).當y=﹣2x﹣6=1時,x=﹣5,∵﹣1﹣(﹣5)=1,∴點C沿x軸向左平移1個單位長度才能落在直線y=﹣2x﹣6上.故答案為1.【點睛】本題主要考查平移的性質,解此題的關鍵在于先利用勾股定理求得相關點的坐標,然后根據平移的性質將其縱坐標代入直線函數式求解即可.13、x≠1【解析】

解:∵有意義,∴x-1≠0,∴x≠1;故答案是:x≠1.14、或【解析】

作PH⊥CD,垂足為H,設運動時間為t秒,用t表示線段長,用勾股定理列方程求解.【詳解】設P,Q兩點從出發經過t秒時,點P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點從出發經過1.6或4.8秒時,點P,Q間的距離是10cm.故答案為或.【點睛】考查矩形的性質,勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關鍵.15、3x+【解析】

根據100個和尚分100個饅頭,正好分完.大和尚一人分3個,小和尚3人分一個得到等量關系為:大和尚的人數+小和尚的人數=100,大和尚分得的饅頭數+小和尚分得的饅頭數=100,依此列出方程組即可.【詳解】設大和尚x人,小和尚y人,由題意可得x+y=故答案為x+y=【點睛】本題考查了由實際問題抽象出二元一次方程組,關鍵以和尚數和饅頭數作為等量關系列出方程組.16、1【解析】

過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設OF=r,則OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的長即可.【詳解】過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設OF=x,則OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案為1.三、解答題(共8題,共72分)17、證明見解析【解析】

首先證明△ABC≌△DEF(ASA),進而得出BC=EF,BC∥EF,進而得出答案.【詳解】∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四邊形BCEF是平行四邊形.【點睛】本題考查了全等三角形的判定與性質與平行四邊形的判定,解題的關鍵是熟練的掌握全等三角形的判定與性質與平行四邊形的判定.18、(1)3;(1)x1=4,x1=1.【解析】

(1)根據有理數的混合運算法則計算即可;(1)先移項,再提取公因式求解即可.【詳解】解:(1)原式=8×(﹣)﹣4×+1=8×﹣1+1=3;(1)移項得:x(x﹣4)﹣1(x﹣4)=0,(x﹣4)(x﹣1)=0,x﹣4=0,x﹣1=0,x1=4,x1=1.【點睛】本題考查了有理數的混合運算與解一元二次方程,解題的關鍵是熟練的掌握有理數的混合運算法則與根據因式分解法解一元二次方程.19、(1)125;(2)詳見解析;(3)45°<α<90°.【解析】

(1)利用四邊形內角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;(2)證明△ABC≌△EDC(AAS)即可求解;(3)當∠ABC=α=90°時,△ABC的外心在其直角邊上,∠ABC=α>90°時,△ABC的外心在其外部,即可求解.【詳解】(1)在四邊形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,而∠ADC+∠EDC=180°,∴∠ABC=∠PDC=α=125°,故答案為125;(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,∴∠ACB=∠ECD,又BC=DC,由(1)知:∠ABC=∠PDC,∴△ABC≌△EDC(AAS),∴AC=CE;(3)當∠ABC=α=90°時,△ABC的外心在其斜邊上;∠ABC=α>90°時,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.【點睛】本題考查圓的綜合運用,解題的關鍵是掌握三角形全等的判定和性質(AAS)、三角形外心.20、2.【解析】

根據勾股定理逆定理,證△ABD是直角三角形,得AD⊥BC,可證AD垂直平分BC,所以AB=AC.【詳解】解:∵AD是△ABC的中線,且BC=10,∴BD=BC=1.∵12+122=22,即BD2+AD2=AB2,∴△ABD是直角三角形,則AD⊥BC,又∵CD=BD,∴AC=AB=2.【點睛】本題考核知識點:勾股定理、全等三角形、垂直平分線.解題關鍵點:熟記相關性質,證線段相等.21、(1)詳見解析;(2)30.【解析】

(1)利用切線的性質得∠CEO=90°,再證明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根據切線的判定定理得到結論;(2)利用四邊形FOBE是菱形得到OF=OB=BF=EF,則可判定△OBE為等邊三角形,所以∠BOE=60°,然后利用互余可確定∠D的度數.【詳解】(1)證明:∵CD與⊙O相切于點E,∴OE⊥CD,∴∠CEO=90°,又∵OC∥BE,∴∠COE=∠OEB,∠OBE=∠COA∵OE=OB,∴∠OEB=∠OBE,∴∠COE=∠COA,又∵OC=OC,OA=OE,∴△OCA≌△OCE(SAS),∴∠CAO=∠CEO=90°,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴△OBE為等邊三角形,∴∠BOE=60°,而OE⊥CD,∴∠D=30°.【點睛】本題考查了切線的判定與性質:經過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常常“遇到切點連圓心得半徑”.也考查了圓周角定理.22、通信塔CD的高度約為15.9cm.【解析】

過點A作AE⊥CD于E,設CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出關于x的方程,求出方程的解即可.【詳解】過點A作AE⊥CD于E,則四邊形ABDE是矩形,設CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在Rt△ABM中,BM=cm,∵AE=BD,∴,解得:x=+3,∴CD=CE+ED=+9≈15.9(cm),答:通信塔CD的高度約為15.9cm.【點睛】本題考查了解直角三角形,能通過解直角三角形求出AE、BM的長度是解此題的關鍵.23、(1)相等或互補;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC=或.【解析】

(1)分為點C,D在直線MN同側和點C,D在直線MN兩側,兩種情況討論即可解題,(2)①作輔助線,證明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解題,②在射線AM上截取AF=BD,連接CF,證明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解題,(3)分為當點C,D在直線MN同側,當點C,D在直線MN兩側,兩種情況解題即可,見詳解.【詳解】解:(1)相等或互補;理由:當點C,D在直線MN同側時,如圖1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四邊形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;當點C,D在直線MN兩側時,如圖2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論