重難點(diǎn)08 玩轉(zhuǎn)外接球、內(nèi)切球、棱切球經(jīng)典問題(十四大題型)(原卷版)_第1頁
重難點(diǎn)08 玩轉(zhuǎn)外接球、內(nèi)切球、棱切球經(jīng)典問題(十四大題型)(原卷版)_第2頁
重難點(diǎn)08 玩轉(zhuǎn)外接球、內(nèi)切球、棱切球經(jīng)典問題(十四大題型)(原卷版)_第3頁
重難點(diǎn)08 玩轉(zhuǎn)外接球、內(nèi)切球、棱切球經(jīng)典問題(十四大題型)(原卷版)_第4頁
重難點(diǎn)08 玩轉(zhuǎn)外接球、內(nèi)切球、棱切球經(jīng)典問題(十四大題型)(原卷版)_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重難點(diǎn)08玩轉(zhuǎn)外接球、內(nèi)切球、棱切球經(jīng)典問題【題型歸納目錄】題型一:正方體、長(zhǎng)方體模型題型二:正四面體模型題型三:對(duì)棱相等模型題型四:直棱柱模型題型五:直棱錐模型題型六:正棱錐與側(cè)棱相等模型題型七:側(cè)棱為外接球直徑模型題型八:共斜邊拼接模型題型九:垂面模型題型十:最值模型題型十一:二面角模型題型十二:圓錐圓柱圓臺(tái)模型題型十三:錐體內(nèi)切球題型十四:棱切球【方法技巧與總結(jié)】技巧總結(jié)一:正方體、長(zhǎng)方體外接球1、正方體的外接球的球心為其體對(duì)角線的中點(diǎn),半徑為體對(duì)角線長(zhǎng)的一半.2、長(zhǎng)方體的外接球的球心為其體對(duì)角線的中點(diǎn),半徑為體對(duì)角線長(zhǎng)的一半.3、補(bǔ)成長(zhǎng)方體(1)若三棱錐的三條側(cè)棱兩兩互相垂直,則可將其放入某個(gè)長(zhǎng)方體內(nèi),如圖1所示.(2)若三棱錐的四個(gè)面均是直角三角形,則此時(shí)可構(gòu)造長(zhǎng)方體,如圖2所示.(3)正四面體可以補(bǔ)形為正方體且正方體的棱長(zhǎng),如圖3所示.(4)若三棱錐的對(duì)棱兩兩相等,則可將其放入某個(gè)長(zhǎng)方體內(nèi),如圖4所示圖1圖2圖3圖4技巧總結(jié)二:正四面體外接球如圖,設(shè)正四面體的的棱長(zhǎng)為,將其放入正方體中,則正方體的棱長(zhǎng)為,顯然正四面體和正方體有相同的外接球.正方體外接球半徑為,即正四面體外接球半徑為.技巧總結(jié)三:對(duì)棱相等的三棱錐外接球四面體中,,,,這種四面體叫做對(duì)棱相等四面體,可以通過構(gòu)造長(zhǎng)方體來解決這類問題.如圖,設(shè)長(zhǎng)方體的長(zhǎng)、寬、高分別為,則,三式相加可得而顯然四面體和長(zhǎng)方體有相同的外接球,設(shè)外接球半徑為,則,所以.技巧總結(jié)四:直棱柱外接球如圖1,圖2,圖3,直三棱柱內(nèi)接于球(同時(shí)直棱柱也內(nèi)接于圓柱,棱柱的上下底面可以是任意三角形)圖1圖2圖3第一步:確定球心的位置,是的外心,則平面;第二步:算出小圓的半徑,(也是圓柱的高);第三步:勾股定理:,解出技巧總結(jié)五:直棱錐外接球如圖,平面,求外接球半徑.解題步驟:第一步:將畫在小圓面上,為小圓直徑的一個(gè)端點(diǎn),作小圓的直徑,連接,則必過球心;第二步:為的外心,所以平面,算出小圓的半徑(三角形的外接圓直徑算法:利用正弦定理,得),;第三步:利用勾股定理求三棱錐的外接球半徑:=1\*GB3①;=2\*GB3②.技巧總結(jié)六:正棱錐與側(cè)棱相等模型1、正棱錐外接球半徑:.2、側(cè)棱相等模型:如圖,的射影是的外心三棱錐的三條側(cè)棱相等三棱錐的底面在圓錐的底上,頂點(diǎn)點(diǎn)也是圓錐的頂點(diǎn).解題步驟:第一步:確定球心的位置,取的外心,則三點(diǎn)共線;第二步:先算出小圓的半徑,再算出棱錐的高(也是圓錐的高);第三步:勾股定理:,解出.技巧總結(jié)七:側(cè)棱為外接球直徑模型方法:找球心,然后作底面的垂線,構(gòu)造直角三角形.技巧總結(jié)八:共斜邊拼接模型如圖,在四面體中,,,此四面體可以看成是由兩個(gè)共斜邊的直角三角形拼接而形成的,為公共的斜邊,故以“共斜邊拼接模型”命名之.設(shè)點(diǎn)為公共斜邊的中點(diǎn),根據(jù)直角三角形斜邊中線等于斜邊的一半的結(jié)論可知,,即點(diǎn)到,,,四點(diǎn)的距離相等,故點(diǎn)就是四面體外接球的球心,公共的斜邊就是外接球的一條直徑.技巧總結(jié)九:垂面模型如圖1所示為四面體,已知平面平面,其外接球問題的步驟如下:(1)找出和的外接圓圓心,分別記為和.(2)分別過和作平面和平面的垂線,其交點(diǎn)為球心,記為.(3)過作的垂線,垂足記為,連接,則.(4)在四棱錐中,垂直于平面,如圖2所示,底面四邊形的四個(gè)頂點(diǎn)共圓且為該圓的直徑.圖1圖2技巧總結(jié)十:最值模型這類問題是綜合性問題,方法較多,常見方法有:導(dǎo)數(shù)法,基本不等式法,觀察法等技巧總結(jié)十一:二面角模型如圖1所示為四面體,已知二面角大小為,其外接球問題的步驟如下:(1)找出和的外接圓圓心,分別記為和.(2)分別過和作平面和平面的垂線,其交點(diǎn)為球心,記為.(3)過作的垂線,垂足記為,連接,則.(4)在四棱錐中,垂直于平面,如圖2所示,底面四邊形的四個(gè)頂點(diǎn)共圓且為該圓的直徑.技巧總結(jié)十二:圓錐圓柱圓臺(tái)模型1、球內(nèi)接圓錐如圖,設(shè)圓錐的高為,底面圓半徑為,球的半徑為.通常在中,由勾股定理建立方程來計(jì)算.如圖,當(dāng)時(shí),球心在圓錐內(nèi)部;如圖,當(dāng)時(shí),球心在圓錐外部.和本專題前面的內(nèi)接正四棱錐問題情形相同,圖2和圖3兩種情況建立的方程是一樣的,故無需提前判斷.由圖、圖可知,或,故,所以.2、球內(nèi)接圓柱如圖,圓柱的底面圓半徑為,高為,其外接球的半徑為,三者之間滿足.3、球內(nèi)接圓臺(tái),其中分別為圓臺(tái)的上底面、下底面、高.技巧總結(jié)十三:錐體內(nèi)切球方法:等體積法,即技巧總結(jié)十四:棱切球方法:找切點(diǎn),找球心,構(gòu)造直角三角形【典型例題】題型一:正方體、長(zhǎng)方體模型【例1】(2025·高一·重慶·期中)正方體內(nèi)切球與外接球體積之比為(

)A. B. C. D.【變式1-1】(2025·高一·云南昆明·期中)已知三棱錐,,、兩兩垂直,,,,則三棱錐的外接球表面積為(

)A. B. C. D.【變式1-2】(2025·天津武清·模擬預(yù)測(cè))已知正方體的棱長(zhǎng)為2,其各面的中心分別為點(diǎn)E,F(xiàn),G,H,M,N,則連接相鄰各面中心構(gòu)成的幾何體的外接球表面積為(

)A. B. C. D.題型二:正四面體模型【例2】(2025·全國(guó)·高三專題練習(xí))棱長(zhǎng)為a的正方體內(nèi)有一個(gè)棱長(zhǎng)為x的正四面體,且該正四面體可以在正方體內(nèi)任意轉(zhuǎn)動(dòng),則x的最大值為(

)A. B. C. D.【變式2-1】(2025·河南·西平縣高級(jí)中學(xué)模擬預(yù)測(cè))一個(gè)正四面體的棱長(zhǎng)為2,則這個(gè)正四面體的外接球的體積為(

)A. B. C. D.【變式2-2】(2025·河南新鄉(xiāng)·二模)在正四面體中,,D,E,F(xiàn)分別為SA,SB,SC的中點(diǎn),則該正四面體的外接球被平面所截的圓周長(zhǎng)為.題型三:對(duì)棱相等模型【例3】四面體的一組對(duì)棱分別相等,且長(zhǎng)度依次為,,5,則該四面體的外接球的表面積為A. B. C. D.【變式3-1】(2025·高一·安徽·階段練習(xí))為了求一個(gè)棱長(zhǎng)為的正四面體體積,小明同學(xué)設(shè)計(jì)如下解法:構(gòu)造一個(gè)棱長(zhǎng)為1的正方體,如圖1:則四面體為棱長(zhǎng)是的正四面體,且有.學(xué)以致用:(1)如圖2,一個(gè)四面體三組對(duì)棱長(zhǎng)分別為,2,,求此四面體外接球表面積;(2)若四面體ABCD每組對(duì)棱長(zhǎng)分別相等,求證:該四面體的四個(gè)面都是銳角三角形.【變式3-2】如圖,在三棱錐中,,,,則三棱錐外接球的體積為A. B. C. D.題型四:直棱柱模型【例4】(2025·天津·一模)如圖,在直三棱柱中,,是等邊三角形,點(diǎn)為該三棱柱外接球的球心,則三棱柱外接球表面積與四棱錐體積之比為(

)A. B. C. D.【變式4-1】(多選題)(2025·高一·山東青島·期中)如圖,在直三棱柱中,,,,側(cè)面的對(duì)角線交點(diǎn),點(diǎn)是側(cè)棱上的一個(gè)動(dòng)點(diǎn),下列結(jié)論正確的是(

)A.直三棱柱的體積是1B.直三棱柱的外接球表面積是C.三棱錐的體積與點(diǎn)的位置有關(guān)D.的最小值為【變式4-2】(2025·高二·上海浦東新·期中)已知一個(gè)體積為的球內(nèi)切于直三棱柱(即與三棱柱的所有面均相切),底面的中有,則該直三棱柱的外接球(即使所有頂點(diǎn)均落在球面上)的表面積為.題型五:直棱錐模型【例5】(2025·高一·江蘇南京·期末)如圖,四棱錐中,面,四邊形為正方形,,與平面所成角的大小為,且,則四棱錐的外接球表面積為(

)A.26π B.28πC.34π D.14π【變式5-1】(2025·高一·黑龍江七臺(tái)河·期中)據(jù)《九章算術(shù)》記載,“鱉臑”為四個(gè)面都是直角三角形的三棱錐.如圖所示,現(xiàn)有一個(gè)“鱉臑”,底面,,且,三棱錐外接球表面積為(

)A. B. C. D.【變式5-2】(2025·高一·河北唐山·期中)已知三棱錐中,面ABC,底面ABC是邊長(zhǎng)為2的正三角形,,則三棱錐的外接球表面積為(

)A. B. C. D.題型六:正棱錐與側(cè)棱相等模型【例6】(2025·高三·安徽池州·期末)三棱錐中,,,,則三棱錐外接球表面積的最小值是(

)A. B. C. D.【變式6-1】(2025·高二·江蘇南通·階段練習(xí))已知正三棱錐的底面邊長(zhǎng)為,若半徑為1的球與該正三棱錐的各棱均相切,則三棱錐外接球的半徑為(

)A. B.2 C. D.【變式6-2】(2025·重慶市實(shí)驗(yàn)中學(xué)高一階段練習(xí))三棱錐體積為,且,則三棱錐外接球的表面積為____________.題型七:側(cè)棱為外接球直徑模型【例7】(2025?五華區(qū)校級(jí)期末)已知三棱錐的所有頂點(diǎn)都在球的球面上,,,,為球的直徑,,則這個(gè)三棱錐的體積為A. B. C. D.【變式7-1】(2025?紅花崗區(qū)校級(jí)月考)已知三棱錐的所有頂點(diǎn)都在同一個(gè)球面上,是邊長(zhǎng)為2的正三角形,為球的直徑,若該三棱錐的體積為,則該球的表面積A. B. C. D.【變式7-2】(2025?撫順校級(jí)月考)已知三棱錐的所有頂點(diǎn)都在球的球面上,為球的直徑,且,,為等邊三角形,三棱錐的體積為,則球的表面積為A. B. C. D.題型八:共斜邊拼接模型【例8】在矩形中,,沿將矩形折成一個(gè)直二面角,則四面體的外接球的體積為()A.B.C.D.【變式8-1】三棱錐中,平面平面,,,,則三棱錐的外接球的半徑為【變式8-2】在平行四邊形中,滿足,,若將其沿折成直二面角,則三棱錐的外接球的表面積為A. B. C. D.題型九:垂面模型【例9】(2025·河南·模擬預(yù)測(cè))在四棱錐中,側(cè)面底面ABCD,且,,底面ABCD是邊長(zhǎng)為2的正方形,設(shè)P為該四棱錐外接球表面上的動(dòng)點(diǎn),則三棱錐的最大體積為(

)A. B. C. D.【變式9-1】(2025·江西南昌·模擬預(yù)測(cè))若體積為的四棱錐的五個(gè)頂點(diǎn)都在表面積為的球面上,四棱錐的底面是邊長(zhǎng)為的正方形,平面平面,則棱的長(zhǎng)為(

)A.或 B.或 C.或 D.或【變式9-2】(2025·高三·山東威海·期末)已知三棱錐為中點(diǎn),側(cè)面底面,則三棱錐外接球的表面積為,過點(diǎn)的平面截該三棱錐外接球所得截面面積的取值范圍為題型十:最值模型【例10】(2025·高一·安徽池州·期中)已知正方體的外接球與內(nèi)切球上各有一個(gè)動(dòng)點(diǎn),若線段的最小值為,則正方體的外接球的表面積為.【變式10-1】(2025·陜西西安·模擬預(yù)測(cè))已知直四棱柱ABCD-A1B1C1D1,高AA1為3,底面ABCD為長(zhǎng)方形且面積為,則該直四棱柱外接球表面積的最小值為.【變式10-2】(2025·遼寧撫順·一模)已知三棱柱的頂點(diǎn)都在球O的表面上,且,若三棱柱的側(cè)面積為,則球O的表面積的最小值是(

)A. B. C. D.題型十一:二面角模型【例11】(2025·安徽·蕪湖一中模擬預(yù)測(cè))已知在菱形中,,把沿折起到位置,若二面角大小為,則四面體的外接球體積是(

)A. B. C. D.【變式11-1】(2025·全國(guó)·高三專題練習(xí))在三棱錐A-BCD中,,,二面角A-BD-C是鈍角.若三棱錐A-BCD的體積為2,則A-BCD的外接球的表面積是(

)A.12π B.13π C. D.題型十二:圓錐圓柱圓臺(tái)模型【例12】(2025·高一·浙江寧波·期中)圓臺(tái)的上下底面半徑和高的比為,母線長(zhǎng)為,則圓臺(tái)的外接球表面積為.【變式12-1】(2025·高一·陜西西安·期末)底面半徑為的圓錐側(cè)面展開圖的圓心角大小為,則此圓錐外接球表面積為(

)A. B. C. D.【變式12-2】(2025·全國(guó)·高三專題練習(xí))如圖,半徑為4的球中有一內(nèi)接圓柱,當(dāng)圓柱的側(cè)面積最大時(shí),球的表面積與圓柱的表面積之差為(

)A. B. C. D.題型十三:錐體內(nèi)切球【例13】(2025·高二·湖南常德·期中)在棱長(zhǎng)為2的正四面體中,正四面體的內(nèi)切球表面積為(

)A. B. C. D.【變式13-1】(2025·高二·浙江寧波·期末)已知正四棱錐的底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為,其內(nèi)切球與兩側(cè)面,分別切于點(diǎn),則的長(zhǎng)度為(

)A. B. C. D.【變式13-2】(多選題)(2025·江西上饒·一模)空間中存在四個(gè)球,它們半徑分別是2,2,4,4,每個(gè)球都與其他三個(gè)球外切,下面結(jié)論正確的是(

)A.以四個(gè)球球心為頂點(diǎn)的四面體體積為B.以四個(gè)球球心為頂點(diǎn)的四面體體積為C.若另一小球與這四個(gè)球都外切,則該小球半徑為D.若另一小球與這四個(gè)球都內(nèi)切,則該小球半徑為題型十四:棱切球【例14】(多選題)(2025·高三·江蘇揚(yáng)州·開學(xué)考試)我們把所有棱長(zhǎng)都相等的正棱柱(錐)叫“等長(zhǎng)正棱柱(錐)”,而與其所有棱都相切的稱為棱切球,設(shè)下列“等長(zhǎng)正棱柱(錐)”的棱長(zhǎng)都為1,則下列說法中正確的有(

)A.正方體的棱切球的半徑為B.正四面體的棱切球的表面積為C.等長(zhǎng)正六棱柱的棱切球的體積為D.等長(zhǎng)正四棱錐的棱切球被棱錐5個(gè)面(側(cè)面和底面)截得的截面面積之和為【變式14-1】(多選題)(2025·高一·浙江·期中)已知棱長(zhǎng)為2的正方體的棱切球(與正方體的各條棱都相切)為球,則下列說法正確的是(

)A.球的體積為B.球內(nèi)接圓柱的側(cè)面積的最大值為C.球在正方體外部的體積小于D.球在正方體外部的面積大于【變式14-2】(多選題)(2025·高一·山東臨沂·期中)如圖,已知棱長(zhǎng)為1的正方體中,下列命題正確的是(

A.正方體外接球的直徑為B.點(diǎn)在線段上運(yùn)動(dòng),則四面體的體積不變C.與所有12條棱都相切的球的體積為D.是正方體的內(nèi)切球的球面上任意一點(diǎn),則長(zhǎng)的最小值是

【過關(guān)測(cè)試】1.(2025·高一·江蘇鹽城·期末)《九章算術(shù)》中將“底面為直角三角形且側(cè)棱垂直于底面的三棱柱”稱為塹堵;將“底面為矩形且一條側(cè)棱垂直于底面的四棱錐”稱為陽馬.如圖,在塹堵中,,,,陽馬的外接球表面積為(

)A. B. C. D.2.(2025·高一·四川綿陽·期末)在邊長(zhǎng)為4的正方形中,,分別為,的中點(diǎn).將,,分別沿,,折起,使,,三點(diǎn)重合于,則三棱錐的外接球表面積為(

)A. B. C. D.3.(2025·高三·全國(guó)·階段練習(xí))如圖,在正四棱柱中,底面的邊長(zhǎng)為3,與底面所成角的大小為,且,則該正四棱柱的外接球表面積為A. B.C. D.4.(2025·高一·四川南充·階段練習(xí))勒洛四面體是一個(gè)非常神奇的“四面體”,它能在兩個(gè)平行平面間自由轉(zhuǎn)動(dòng),并且始終保持與兩平面都接觸,因此它能像球一樣來回滾動(dòng)(如圖甲),利用這一原理,科技人員發(fā)明了轉(zhuǎn)子發(fā)動(dòng)機(jī).勒洛四面體是以正四面體的四個(gè)頂點(diǎn)為球心,以正四面體的棱長(zhǎng)為半徑的四個(gè)球的相交部分圍成的幾何體如圖乙所示,若正四面體的棱長(zhǎng)為4,則下列說法正確的是(

)A.勒洛四面體最大的截面是正三角形B.勒洛四面體的體積是C.勒洛四面體內(nèi)切球的半徑是D.若是勒洛四面體表面上的任意兩點(diǎn),則的最大值為25.(2025·高一·福建龍巖·期末)已知球O內(nèi)切于圓臺(tái)EF,其軸截面如圖所示,四邊形ABCD為等腰梯形,,且,則圓臺(tái)EF的體積為(

A. B. C. D.6.(2025·高二·甘肅武威·階段練習(xí))如圖,若圓臺(tái)的上?下底面半徑分別為,且,則此圓臺(tái)的內(nèi)切球(與圓臺(tái)的上?下底面及側(cè)面都相切的球叫圓臺(tái)的內(nèi)切球)的表面積為(

A. B. C. D.7.(2025·安徽池州·二模)已知圓錐的底面半徑為3,其內(nèi)切球表面積為,則該圓錐的側(cè)面積為(

)A. B. C. D.8.(2025·全國(guó)·模擬預(yù)測(cè))正四面體的棱長(zhǎng)為2,則其棱切球的體積為(

)A. B. C. D.9.(2025·高一·廣東佛山·期末)已知正四棱臺(tái),半球的球心在底面的中心,且半球與該棱臺(tái)的各棱均相切,則半球的表面積為(

)A. B. C. D.10.(多選題)(2025·高一·黑龍江大慶·期末)如圖所示,在棱長(zhǎng)為2的正方體中,分別為的中點(diǎn),則(

)A.B.平面C.直線與平面所成的角為D.三棱錐外接球表面積為11.(多選題)(2025·高一·浙江寧波·期中)如圖是一個(gè)圓錐和一個(gè)圓柱的組合體,圓錐的底面和圓柱的上底面完全重合且圓錐的高度是圓柱高度的一半,若該組合體外接球的半徑為2,則(

)A.圓錐的底面半徑為1B.圓柱的體積是外接球體積的四分之三C.該組合體的外接球表面積與圓柱底面面積的比值為D.圓錐的側(cè)面積是圓柱側(cè)面積的一半12.(多選題)(2025·高三·湖北武漢·期中)已知球O是三棱錐的外接球,,則,點(diǎn)D是PB的中點(diǎn),且,則下列說法正確的是(

)A.三棱錐最長(zhǎng)的棱棱長(zhǎng)為 B.平面PABC.球心O到底面PAB的距離為 D.球O的表面積為13.(多選題)(2025·高一·江蘇蘇州·期中)半正多面體是由兩種或兩種以上的正多邊形圍成的多面體,半正多面體體現(xiàn)了數(shù)學(xué)的對(duì)稱美,如圖是一個(gè)棱數(shù)為24的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的棱上,且此正方體的棱長(zhǎng)為1,則下列關(guān)于該多面體的說法中正確的是(

)A.多面體有12個(gè)頂點(diǎn),14個(gè)面B.多面體的表面積為3C.多面體的體積為D.多面體有外接球(即經(jīng)過多面體所有頂點(diǎn)的球)14.(多選題)(2025·高一·四川綿陽·期末)《九章算術(shù)》中稱一個(gè)正方體內(nèi)兩個(gè)互相垂直的內(nèi)切圓柱所圍成的幾何體為“牟合方蓋”(如圖所示),已知該正方體的棱長(zhǎng)為1,則下列命題正確的是(

)A.正方體的內(nèi)切球的體積等于該牟合方蓋的內(nèi)切球的體積B.該牟合方蓋的內(nèi)切球的體積與其中一個(gè)圓柱體的體積之比為2∶3C.該牟合方蓋的內(nèi)切球被平面截得的截面面積為D.以正方體的頂點(diǎn)A為球心,1為半徑的球在該正方體內(nèi)部部分的體積與該牟合方蓋的內(nèi)切球的體積之比為15.(2025·高一·天津南開·期末)為迎接我校建校120周年校慶,數(shù)學(xué)學(xué)科在八角形校徽中生發(fā)靈感,設(shè)計(jì)了一枚“立體八角形”水晶雕塑,寓意南開在新時(shí)代中國(guó)“保持真純初心,駿駿汲汲前行”,以下為該雕塑的設(shè)計(jì)圖及俯視圖,它由兩個(gè)中心重合的正四棱柱組合而成,其中一個(gè)正四棱柱可看作由另一個(gè)正四棱柱旋轉(zhuǎn)45°而成,已知正四棱

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論