




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper11059
DesignofPartialPopulationExperimentswithanApplicationtoSpilloversinTaxCompliance
GuillermoCruces
DarioTortarolo
GonzaloVazquez–Bare
WORLDBANKGROUP
DevelopmentEconomics
DevelopmentResearchGroupFebruary2025
ReproducibleResearchRepository
Averifiedreproducibilitypackageforthispaperisavailableat
,click
here
fordirectaccess.
PolicyResearchWorkingPaper11059
Abstract
Thispaperdevelopsaframeworktoanalyzepartialpopula–tionexperiments,ageneralizationoftheclusterexperimentaldesignwhereclustersareassignedtodifferenttreatmentintensities.Theframeworkallowsforheterogeneityinclus–tersizesandoutcomedistributions.Thepaperstudiesthelarge–samplebehaviorofOLSestimatorsandcluster–ro–bustvarianceestimatorsandshowsthat(i)ignoringclusterheterogeneitymayresultinseverelyunderpoweredexper–imentsand(ii)thecluster–robustvarianceestimatormaybeupward–biasedwhenclustersareheterogeneous.Thepaperderivesformulasforpower,minimumdetectable
effects,andoptimalclusterassignmentprobabilities.Alltheresultsapplytoclusterexperiments,aparticularcaseoftheframework.ThepapersetsupapotentialoutcomesframeworktointerprettheOLSestimandsascausaleffects.Itimplementsthemethodsinalarge–scaleexperimenttoestimatethedirectandspillovereffectsofacommunicationcampaignonpropertytaxcompliance.Theanalysisrevealsanincreaseintaxcomplianceamongindividualsdirectlytargetedwiththemailing,aswellascompliancespilloversonuntreatedindividualsinclusterswithahighproportionoftreatedtaxpayers.
ThispaperisaproductoftheDevelopmentResearchGroup,DevelopmentEconomic.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp.Theauthors
maybecontactedatdtortarolo@.Averifiedreproducibilitypackageforthispaperisavailableat
http://
,click
here
fordirectaccess.
Y
C
I
A
E
RES
L
O
P
H
C
R
S
TRANSPARENT
P
E
R
W
O
R
K
I
ANALYSIS
A
NGP
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
DesignofPartialPopulationExperiments
withanApplicationtoSpilloversinTaxComplianc
e*
GuillermoCruces,U.ofNottingham&CONICET-CEDLAS-UNLP
DarioTortarolo,WorldBankDECRG
GonzaloVazquez-Bare,UCSantaBarbara
JELCODES:C01,C93,H71,H26,H21,O23.
KEYWORDS:partialpopulationexperiments,spillovers,randomizedcontrolledtrials,clusterex-periments,two-stagedesigns,propertytax,taxcompliance.
*WethankYuehaoBai,YoussefBenzarti,AugustinBergeron,JavierBirchenall,MatiasCattaneo,MaxFarrell,KelseyJack,HeatherRoyer,DougSteigerwaldandAlisaTazhitdinovaforvaluablediscussionsandsuggestions,andseminarpartici-pantsatthe2021NationalTaxAssociationconference,IFS,CEDLAS-UNLP,andthe2022AdvanceswithFieldExperimentsconference.WethankJulianAmendolaggineandJuanLuisSchiavonifortheirinvaluablesupportthroughouttheproject.WethankBrunoCrponandRolandRathelotfortheirhelpinobtainingtheirdata.Theviewsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelop-ment/WorldBankanditsaf?liatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.Correspondingauthor:DarioTortarolo,E-mail:
dtortarolo@.
ThisprojectwasreviewedandapprovedinadvancebytheInstitutionalReviewBoardattheUniversityofNottingham.ThedesignforthisexperimentwaspreregisteredintheAEARCTRegistry(RCTID:AEARCTR-0006569).Allremainingerrorsareourown.
2
1Introduction
Randomizedcontrolledtrials(RCTs)areextensivelyusedineconomics.Alargefractionoftheseexperi-mentsarebasedontheassumptionthatthetreatmentassignmentofoneunitorsubjectdoesnotin?uencetheoutcomesofothers.Theassumptionofnointerference,however,maybeviolatedinmanysettings.Insuchcases,identifyingandmeasuringspilloversbetweenunitsiscrucialforunderstandingthenatureandmagnitudeofinteractionsbetweensubjects,aswellasforaccuratelyassessingthedirectimpactofthetreatment.
Whiletheearlyexperimentalliteratureconsideredtheimpactonuntreatedunitsinanex-postmanner(e.g.
MiguelandKremer,
2004
),?eldexperimentsincorporatingspillovereffectsintotheirdesignhavegainedtractioninappliedresearch.Insettingswhereunitsaregroupedintoindependentclusters,suchasschools,villages,or?rms,acommondesignisthepartialpopulationdesign.Partialpopulationdesignsareageneralizationoftheclustereddesignwhereinclustersassignedtodifferenttreatmentintensitiesorsaturationsarecomparedtopurecontrolclusterswithnotreatedunits(
Mof?t,
2001;
Du?oandSaez,
2003;
HudgensandHalloran,
2008;
HiranoandHahn,
2010;
Bairdetal.,
2018
).Thevariationintreatmentintensityallowsresearcherstodisentanglethedirectandindirecteffectsofatreatment.Inthispaper,weprovideaframeworktoanalyzethistypeofexperimentwhenclustersareheterogeneous.
Weconsidertwodimensionsofclusterheterogeneitythathaveimportantpracticalimplications:het-erogeneityinclustersizesandheterogeneityinoutcomedistributionsacrossclusters(distributionalhet-erogeneity)
1.
Whenanalyzinganexperimentwithheterogeneousclusters,correctlyaccountingforthisheterogeneityiscrucialforseveralreasons.Ontheonehand,varianceformulashavetobeadjustedac-cordingly,andfailingtodosomayresultinseverelyunderpoweredexperiments.Ontheotherhand,clusterheterogeneitycanaffecttheaccuracyofthelargesamplenormalapproximation,andinferencebasedonthisapproximationcanbemisleadingwhenclustersareveryheterogeneous(
Carter,Schnepel
andSteigerwald,
2017;
Djogbenou,MacKinnonand?rregaardNielsen,
2019;
HansenandLee,
2019;
SasakiandWang,
2022;
Chiang,SasakiandWang,
2023
).
Withthesechallengesinmind,ourpaperprovides?vecontributions.First,inTheorem
1
,wederiveanasymptoticdistributionalapproximationforOLSregressionestimatorsinasettingwithbetween-clusterheterogeneity.Weconsideradouble-arrayasymptoticsettingwhereclustersizesareallowed,butnotre-quired,togrowwiththesamplesize.WeprovideconditionsunderwhichOLSestimatorsareconsistentforcluster-size-weightedaveragesofwithin-clusterdifferencesinmeans,andareasymptoticallynormal.Wealsoshowthat,inthepresenceofdistributionalheterogeneity,theusualcluster-robustvarianceestima-torisgenerallyupward-biased,andhenceinferencebasedonthisestimatorisconservative(Proposition
1
).Whilesimilarresultshavebeenobtainedindesign-basedsettingswithnon-randompotentialoutcomes(seee.g.
HudgensandHalloran,
2008;
BasseandFeller,
2018;
Abadieetal.,
2022;
Jiang,ImaiandMalani,
1Wenotethatourframeworkallowsforgeneralformsofbetween-clusterheterogeneity,butassumesthatoutcomesareiden-ticallydistributedwithineachcluster.Thegeneralizationofourresultstothecasewhereoutcomedistributionsareheteroge-neouswithinaclusterisleftforfutureresearch.
3
2023
),toourknowledgewearethe?rsttoshowthisresultinasuperpopulationsettingunderdistributionalheterogeneity.
Oursecondcontributionistoderiveexplicit,closed-formformulastoconductpowerandminimumdetectableeffect(MDE)calculationsunderthetwoaforementionedsourcesofclusterheterogeneity.Wethenconsideranintermediatesettingwhereclustersdifferinsizebutnotintheiroutcomedistributions,whichsimpli?espowerandminimumdetectableeffectscalculationsandcanbeappliedmoreeasilywhenbaselineoutcomedataisnotavailable.Weshowhowourformulasgeneralizethoseavailableintheexistingmethodologicalliteratureonexperimentaldesign(
Du?o,GlennersterandKremer,
2007;
Hirano
andHahn,
2010;
Bairdetal.,
2018
)byallowingformultipletreatmentintensities,clusterheterogeneity,heteroskedasticityandgeneralformsofintraclustercorrelationinoutcomesandtreatments.
Ourthirdcontributionistoderiveoptimalassignmentprobabilitiesdeterminingtheproportionofclus-terstobeassignedtoeachtreatmentsaturation(Theorem
2
).Weprovideatractable,closed-formsolutiontotheoptimalchoiceproblemofminimizingaweightedaverageofestimators’variances.Wealsodiscusshowalternativeoptimalitycriteriamaybeusedincombinationwithourvarianceformulasusingnumericalmethods.
Ourfourthcontributionistosetupapotentialoutcomesframeworkwithwithin-clusterspillovers,heterogeneoustreatmenteffects,andheterogeneousclusters.Weusethisframeworktoprovidesuf?cientconditionsforOLSestimandstorecovercausaldirectandspillovereffects.
Fifth,basedonourframework,wedesignedandconductedalarge-scale?eldexperimenttoestimatedirectandspillovereffectsofarandomizedcommunicationcampaignonpropertytaxcomplianceinAr-gentina.Ourexperimentsentpersonalizedletterstorandomlyselecteddwellingswithremindersabouttaxesdue,informationaboutthestatusoftheaccount,duedates,pastduedebt,andpaymentmethods.Whilethereisampleevidenceontheeffectoftaxremindersoncomplianceandcollection(
Antinyanand
Asatryan,
2024
),ourgoalwasto?ndevidenceonrelativelyelusivespillovereffectsfrominformationcampaignsontaxcollection.Wedesignedtheexperimentbasedonourmethodologicalresultstocapturespillovereffectsofourmailingsonneighborswholiveinthesamestreetblocksoftreatedindividualsbutwhodidnotreceivealetter.Ourresultsrevealhigherpaymentratesfortreatedindividuals,butalsofortheiruntreatedneighborsinthesamestreetblock,comparedtoaccountsinpurecontrolblockswherenoonereceivedtheletter.Spillovereffectsarelowerinmagnitudebutstillsubstantialandpreciselyestimatedinhigh-saturationstreetblocks,especiallywhenaccountingforexpected(pre-registered)heterogeneityinpastcompliance:paymentratesofuntreatedaccountsinhighsaturationblockswithabovemedianpastcomplianceincreasedby2.6percentagepoints,comparedtodirecteffectsofabout5.1percentagepoints.
Comparisonwithcurrentliterature.Ourpapercontributestoagrowingliteratureonexperimentaldesign(
Du?o,GlennersterandKremer,
2007;
BruhnandMcKenzie,
2009;
Bugni,CanayandShaikh,
2018,
2019;
Bai,
2022
)andinparticulartotheliteratureondesignandanalysisofexperimentsunder
4
spilloversorinterference(
HiranoandHahn,
2010;
Athey,EcklesandImbens,
2018;
Bairdetal.,
2018;
Basse,FellerandToulis,
2019;
Jiang,ImaiandMalani,
2023;
Puelzetal.,
2022;
Viviano,
2024;
Leung,
2022;
Liu,
2023
).Morespeci?cally,ourresultsgeneralizethoseof
HiranoandHahn
(2010
),
Hudgens
andHalloran
(2008
)and
Bairdetal.
(2018
)byallowingforclusterheterogeneity,heteroskedasticity,generaltreatmentassignmentmechanismsandwithin-groupcorrelationstructuresandalternativecriteriaforoptimaltreatmentassignment.
Inrelatedwork,
Athey,EcklesandImbens
(2018
),
Basse,FellerandToulis
(2019
)and
Puelzetal.
(2022
)deriverandomizationinferencetestsforageneralclassofnullhypothesesunderinterference.Acloselyrelatedstudyis
Jiang,ImaiandMalani
(2023
),whoanalyzetwo-stagecompletelyrandomizedexperimentsandproviderandomization-basedvarianceestimatorsandsamplesizeformulas.Ourre-sultscomplementthisliteraturebyconsideringdifferentestimands,differentassignmentmechanismsandbyconductingsuper-population-basedlarge-sample(insteadofdesign-based)inferenceinadoublear-rayasymptoticframework.Ourapproachallowsustodeterminetheroleofclusterheterogeneityintheasymptoticbehaviorofthetreatmenteffectestimators.
Ourpaperisalsorelatedtotheliteratureoninferenceinclusteredexperiments,whichareaparticularcaseofpartialpopulationexperimentswithonlytwosaturationsandnowithin-clustertreatmentvariation.
Bugnietal.
(2023
)studyinferenceinclusteredexperimentswithnon-ignorableclustersizesandderivevarianceestimatorsandvalidinferenceproceduresinasetupwithrandomclustersizes.WefurtherdiscusstherelationshipbetweenourresultsandthatpaperinSection
3.5.
Wealsocontributetoalargeempiricalliteratureonpropertytaxesandasmallbutgrowingempiricalliteratureonspillovereffectsintaxcompliance.Onpropertytaxes,recentcontributionsinclude
Brock-
meyeretal.
(2020
)studyofMexicoCity,
Bergeron,TourekandWeigel
(2024
)and
Weigel
(2020
)fortheDemocraticRepublicofCongo,and
Krause
(2020
)forHaiti,amongothers.Thelattertwoareran-domizedcontrolledtrials,andinbothcases,theauthorsaddressthepresenceofspillovers,butinex-postanalysisratherthanintheexperimentaldesigns.Theeffectofsocialinteractionsintaxcomplianceinter-ventionshasremainedarelativelyelusiveissueinthebroaderexperimentalcomplianceliterature.Somenotableexceptionsare
Pomeranz
(2015
),whodetectsenforcementspilloversuptheVATchaininChilean?rms,
Drago,MengelandTraxler
(2020
)whostudyenforcementspilloversofTVlicensinginspectionsonuntreatedhouseholdsinAustria,and
Boningetal.
(2020
)whoanalyzedirectandnetworkeffectsfromin-personvisitsbyrevenueof?cersonvisitedandnon-visited?rmsintheUnitedStates(seethereviewin
PomeranzandVila-Belda,
2019
,formorestudiescoveringspillovereffects).InArgentina,arecentstudyby
Carrillo,CastroandScartascini
(2021
)?ndsneighborhoodspillovereffectsfromaprogramthatrandomlyawarded400taxpayerswiththerepairofasidewalk.Whereasthesepapers?ndspillovereffectsintaxcompliance,theiroriginalexperimentswerenotdesignedtocapturetheseeffects.Webuildonthesepioneeringworkswithaninterventiondesignedwiththepurposeofcapturingspillovers.
Thepaperisorganizedasfollows.Section
2
illustratesthepracticalimportanceofclusterheterogeneitywhenconductingpowercalculations.InSection
3
,wesetupourframeworkandderivethemainresults.In
5
Section
4
,weimplementourmethodsinalarge-scalerandomizedcommunicationcampaign,wedescribetheadministrativedatausedintheanalysis,theempiricalstrategy,andevidenceofdirectandspillovereffects.Section
5
providessomepracticalrecommendationsfordesigningandanalyzingpartialpopulationexperiments.Section
6
concludes.
2WhyisClusterHeterogeneityImportant?
Weconsiderapopulationwhereunitsaregroupedintomutuallyexclusiveandindependentclusters.Com-monexamplesofthistypeofclusteringarestudentsinschools(
MiguelandKremer,
2004;
Beuermann
etal.,
2015
),familymembersinhouseholds(
Barrera-Osorioetal.,
2011;
FoosanddeRooij,
2017
),jobseekersinlocallabormarkets(
Crponetal.,
2013
),employeesin?rmsororganizations(
Du?oandSaez,
2003
),orhouseholdsinneighborhoods,villagesorothergeographicadministrativeunits(
Angelucciand
DeGiorgi,
2009;
IchinoandSch…undeln,
2012;
HaushoferandShapiro,
2016;
GinandMansuri,
2018
).Inourapplication,alocalpropertytaxreminderinformationcampaign,thepopulationofinterestconsistsoftaxpayersinresidentialblocks.Withinthispopulation,westudyanexperimentaldesignwheretreatmentassignmentscanvarybothbetweenandwithinclusters.
Figure
1
showsthedistributionofclustersizesinsixpartialpopulationexperiments,includingouranalysissampleand?vepublishedpapers(
Crponetal.,
2013;
GinandMansuri,
2018;
Haushoferand
Shapiro,
2016;
IchinoandSch…undeln,
2012;
Imai,JiangandMalani,
2021
).The?gurerevealssubstantialvariationinclustersizes.Whenclustersizesareheterogeneous,itislikelythatthedistributionofoutcomeswillvaryacrossclustersaswell.Forinstance,onemayexpectthemeanandthevarianceoftheoutcometobedifferentinlargeclusterscomparedtosmallclusters.Werefertothevariationinoutcomedistributionsacrossclustersasdistributionalheterogeneity.
Intuitively,withheterogeneousclusters,thevarianceofanestimatorofinterest,suchasadifference
inmeansbetweenunitsintreatedanduntreatedclusters(wede?netheestimatorsofinterestpreciselyinthenextsection),canbedecomposedintofourparts:
V[]≈varianceunderuncorrelatedobservations(1)
+clusteringwithequally-sizedclusters(2)
+clustersizeheterogeneity(3)
+clusterdistributionalheterogeneity(4)
The?rsttermisthevariancethatwouldbeobtainedifobservationswereuncorrelatedwithinclusters.Thesecondtermisanadjustmentfactorthataccountsforthewithin-clustercorrelation,oftenknownasthe“designeffect”orthe“Moultonfactor”(after
Moulton,
1986
)thatdependsontheaverageclustersize.Theterminthethirdlinerepresentstheadditionalvariationduetotheheterogeneityinclustersizes,
6
whichintuitivelyaccountsforthevarianceofclustersizes(
Moulton,
1986
,alsoderivesthisadjustmentforarandomeffectsmodel).Finally,thelastcomponentaccountsforthebetween-clusterheterogeneityinoutcomedistributions.Whiletheneedtoaccountforwithin-clustercorrelations(lines(1)and(2))iswell-understoodfordesigningandanalyzingclusteredexperiments,theadjustmenttermsthataccountforclusterheterogeneityaretypicallyassumedawaybytheliteratureonexperimentaldesign(e.g.
Bloom,
2005;
Du?o,GlennersterandKremer,
2007;
HiranoandHahn,
2010;
Bairdetal.,
2018
).
Tonumericallyillustratetheimportanceofappropriatelyaccountingforclusterheterogeneityinthisdesign,weconsiderthesimplesettingofaclusterRCT(whichisaparticularcaseofapartialpopulationexperiment)where“afew”clustersare“large”.Speci?cally,weconsiderasampleof200clusters,indexedbyg=1,...,200,eachhavingsizeng.The?rst10clusterscontain100units,ng=100,andtheremaining190clusterscontain25unitseach,ng=25(thesevaluesarechosentomatchthemedianvaluesintheliteratureinFigure
1
).Weassumethetreatmenthasnoeffect,andtheoutcomeofuniti=1,...,nginclustergisgivenbyarandomeffectsmodel:Yig=αg+νg+ωig,νg,1/2),ωigN(0,1/2)withνgindependentofωigandwhereαgisa(non-random)interceptwithαg=0ifng=25andαg=1ifng=100.ThismodelimpliesthattheaverageoutcomeisE[Yig]=1inlargeclustersandE[Yig]=0insmallclusters.Inaddition,V[Yig]=1andthewithin-clustercorrelationbetweenoutcomesiscor(Yig,Yjg)=0.5.
Figure
2
plotsthreepowerfunctionsforthedifferenceinmeansbetweentreatedanduntreatedclustersthataresearchermayconsiderwhendesigningthisexperiment.Theshort-dashedcurverepresentsthepowerfunctionthatisobtainedwhenignoringbothsourcesofheterogeneity,thatis,consideringonlythetermsinlines(1)and(2)ofthevarianceformula.Usingthisformula,theMDEat80%power,giventhissamplesize,is0.29standarddeviations.However,whenaccountingforthevariationinclustersizes,thecorrespondingpowerfunctionisrepresentedbythelong-dashedcurve.Accordingtothiscurve,thepowertodetectaneffectof0.29isnot80%but69%,sotheexperimentisunderpowered.Furthermore,thetruepowerfunctionthataccountsforbothsourcesofheterogeneity(sizesandoutcomedistributions)isrepresentedbythesolidcurve.Thiscurveshowsthatthetruepowertodetectaneffectof0.29inthissettingwithheterogeneousclustersis48%,signi?cantlybelowthedesiredpowerof80%.Thisnumericalexerciseshowshowignoringheterogeneitymayresultinseverelyunderpoweredexperiments.WeprovidefurtherexamplesoftheimportanceofaccountingforheterogeneityinSection
4.
3AnalysisofPartialPopulationExperiments
3.1Setup
Weconsiderasampleofobservations(units)thataredividedintomutuallyindependentclustersg=
1,...,G,whereeachclustergcontainsngobservationsi=1,...,ngandthetotalsamplesizeisn=
7
Σg.Weviewclustersizesasnon-random(see
Bugnietal.,
2023;
SasakiandWang,
2022
,foranalternativesamplingapproachwhereclustersizesarerandom).Inapartialpopulationexperiment,clustersarerandomlydividedintocategoriesorsaturationsdenotedbyTg∈{0,1,2,...,M},wherebyconventionTg=0denotesapurecontrolcluster(i.e.aclusterwherenounitistreated).LetP[Tg=t]=qt∈(0,1)denotetheprobabilitythatclustergisassignedtosaturationt.Withineachcluster,abinarytreatmentDigisassignedtounitswithprobabilityP[Dig=1|Tg=t]whereP[Dig=0|Tg=0]=1
.2
WeletDg=(D1g,D2g,...,Dngg)9bethevectorofunit-leveltreatmentassignmentsinclusterg,D=
(D,...,D)9andT=(T1,...,TG)9.Figure
A.3
providesanexampleofapartialpopulationdesign
withfoursaturations.NoticethatbothstandardRCTswithindependentobservationsandclusterRCTsareparticularcasesofpartialpopulationexperiments,aswefurtherillustrateinSection
3.5.
TheobservedoutcomeofinterestforunitiinclustergisdenotedbyYigandweletYg=(Y1g,...,Yngg)9bethevectorofobservedoutcomesinclusterg.Inpartialpopulationexperiments,theestimandsofin-terestaretypicallycomparisonsofaverageoutcomesbetweentreatedoruntreatedunitsintreatedclusterstopurecontrolunits,E[Yig|Dig=d,Tg=t]-E[Yig|Tg=0],pooledacrossclusters.Inthe?rstpartofthepaper,wetaketheseestimandsasgivensincetheyarethemostcommonlyanalyzedestimandsintheempiricalliterature.InSection
3.6
,wesetupapotentialoutcomesframeworktorigorouslyjustifythecausalinterpretationoftheseestimands.Letμg(d,t)=E[Yig|Dig=d,Tg=t]betheconditionalexpectationoftheoutcomeinclusterggivenassignment(d,t).Weconsiderthefollowingsamplemeansestimators:
where1=1(Tg=t),N=Σi1(Dig=d)andY-gd=ΣiYig1(Dig=d)/N,de?nedwhenever
N>0.TheseestimatorsarecommonlycomputedbyrunninganOLSregressionoftheoutcomeon
afullsetofindicators(1(Dig=d,Tg=t))(d,t),withoutanintercept.Thus,inwhatfollows,werefertotheseestimatorsasOLSestimators.Ourparameterofinterestisthevectorofcluster-size-weightedaverageofcluster-speci?cdifferencesinmeans:
Wenotethatourframeworkcaneasilyaccommodateotherparameterswithdifferentweightingschemes,
suchasthesimpleaverageacrossclustersΣg(d,t)-μg(0,0))/G.
2Inpractice,somedesiredsaturationsmaynotcoincidewiththeobservedproportionoftreatedunitsforsomeclustersizes.Forinstance,ifP[Dig=1|Tg=t]=0.5butngisodd,theobservedproportionoftreatedcannotbeexactly0.5.Appendix
A.4
proposesanassignmentmechanismthatensuresthattheexpectedproportionoftreatedcoincideswithP[Dig=1|Tg=t].
8
3.2AsymptoticBehaviorofOLSEstimators
WenowstudytheasymptoticdistributionoftheOLSestimatorsde?nedinEquation(
5
)andfunctionsthereof.Weconsideradouble-arrayasymptoticsettingwheretheclustersizesareallowed,butnotre-quired,togrowwiththesamplesize.Thistypeofapproximationismoreappropriatethantheboundedclustersizeapproachwhengroupscanbelargeandheterogeneousinsize,butwenotethatthesettingswithboundedclustersizesand/orequally-sizedclustersarenestedasparticularcasesofouranalysis
.3
Weconsiderthefollowingsamplingscheme.
Assumption1(Sampling)
(i)(Yg,,Dg,,Tgg.
(ii)Foreachgandforalli=1,...,ng,E[Yi|Dig=d,Tg=t]=μ(d,t)forall(d,t)andforalllsuchthatE[|Yig|l|Dig=d,Tg=t]<∞.
(iii)Foreachgandforalli=1,...,ng,P[Dig=d|Tg=t]=pg(d|t)andP[Dig=d,Djg=d,|Tg=
t]=pg(d,d,|t)foralld,d,andt.
Part(i)statesthatclustersaremutuallyindependent,astandardassumptionintheclusteringliterature.
Noticethatwedonotrequireclusterstobeidenticallydistributed,sooutcomedistributionscanbehet-erogeneousacrossclusters.Part(ii)statesthataverageconditionaloutcomesarethesameforallunits
inthesamecluster.Inwhatfollowswede?neμ(d,t)=μg(d,t)forl=1toreducenotation.Part
(iii)statesthattheunit-leveltreatmentprobabilitiesarethesamewithinacluster.Notethatwithin-clusterassignm
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級語文上冊 第六單元 12童區寄傳教學設計 北師大版
- 人教版地理八上第一章第2節《人口》教學設計
- 人教版三年級音樂下冊(簡譜)《可愛的家》教學設計
- 九年級數學下冊 第二章 二次函數2 二次函數的圖象與性質第2課時 二次函數y=ax2+c的圖象與性質教學設計 (新版)北師大版
- 九年級物理下冊 第十六章 電磁轉換 五 電磁感應 發電機教學設計 (新版)蘇科版
- 人教A版 (2019)選擇性必修 第一冊1.2 空間向量基本定理教案設計
- 三年級英語上冊 Unit 6 Happy birthday Part A 第三課時教學設計 人教PEP
- 九年級化學上冊 第六單元 碳和碳的氧化物 課題1 金剛石、石墨和C60教學設計(新版)新人教版
- 人教版七年級下冊歷史(2016新編版)第2課《從“貞觀之治”到“開元盛世”》教學設計
- 六年級下冊有趣的平衡教案及反思
- 2025社保政策培訓
- 2025年蘇州工業園區國企招聘筆試參考題庫含答案解析
- 2025年上海市規劃和國土資源管理局所屬事業單位工作人員招考高頻重點提升(共500題)附帶答案詳解
- 資產管理崗管理制度內容
- 超聲檢查的臨床義及超聲報告的解讀課件
- 《空心膠囊規格尺寸及外觀質量》(T-CNPPA 3008-2020)
- 2024年江蘇省常州市中考英語真題卷及答案解析
- 售前售中售后服務培訓
- 彼得 卒姆托簡介 彼得 卒姆托的建筑解讀 彼得 卒姆托的建筑思想解讀 小32課件講解
- 腦機接口課件
- 【MOOC】知識創新與學術規范-南京大學 中國大學慕課MOOC答案
評論
0/150
提交評論