云南師大附屬中學2025年高三下學期高中聯合考試數學試題含解析_第1頁
云南師大附屬中學2025年高三下學期高中聯合考試數學試題含解析_第2頁
云南師大附屬中學2025年高三下學期高中聯合考試數學試題含解析_第3頁
云南師大附屬中學2025年高三下學期高中聯合考試數學試題含解析_第4頁
云南師大附屬中學2025年高三下學期高中聯合考試數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南師大附屬中學2025年高三下學期高中聯合考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,其中是虛數單位,則對應的點的坐標為()A. B. C. D.2.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.3.已知,則的值等于()A. B. C. D.4.在平面直角坐標系中,若不等式組所表示的平面區域內存在點,使不等式成立,則實數的取值范圍為()A. B. C. D.5.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院校科研方陣.他們是由軍事科學院、國防大學、國防科技大學聯合組建.若已知甲、乙、丙三人來自上述三所學校,學歷分別有學士、碩士、博士學位.現知道:①甲不是軍事科學院的;②來自軍事科學院的不是博士;③乙不是軍事科學院的;④乙不是博士學位;⑤國防科技大學的是研究生.則丙是來自哪個院校的,學位是什么()A.國防大學,研究生 B.國防大學,博士C.軍事科學院,學士 D.國防科技大學,研究生6.已知集合,,則集合子集的個數為()A. B. C. D.7.第七屆世界軍人運動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務,要求每個人都要被派出去提供服務,且每個場地都要有志愿者服務,則甲和乙恰好在同一組的概率是()A. B. C. D.8.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.9.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.10.設,則,則()A. B. C. D.11.已知隨機變量滿足,,.若,則()A., B.,C., D.,12.已知圓關于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當PA最長時,則______________;四棱錐P-ABCD的體積為______________.14.在中,,是的角平分線,設,則實數的取值范圍是__________.15.已知,則__________.16.根據如圖的算法,輸出的結果是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)我國在2018年社保又出新的好消息,之前流動就業人員跨地區就業后,社保轉移接續的手續往往比較繁瑣,費時費力.社保改革后將簡化手續,深得流動就業人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續所需時間(天)與人數的頻數分布表:時間人數156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續所需時間與是否流動人員的列聯表,并判斷是否有95%的把握認為“辦理社保手續所需時間與是否流動人員”有關.列聯表如下流動人員非流動人員總計辦理社保手續所需時間不超過4天辦理社保手續所需時間超過4天60總計21090300(2)為了改進工作作風,提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87918.(12分)“綠水青山就是金山銀山”,為推廣生態環境保護意識,高二一班組織了環境保護興趣小組,分為兩組,討論學習.甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現要從這人的兩個興趣小組中抽出人參加學校的環保知識競賽.(1)設事件為“選出的這個人中要求兩個男生兩個女生,而且這兩個男生必須來自不同的組”,求事件發生的概率;(2)用表示抽取的人中乙組女生的人數,求隨機變量的分布列和期望19.(12分)在△ABC中,分別為三個內角A、B、C的對邊,且(1)求角A;(2)若且求△ABC的面積.20.(12分)設函數.(1)時,求的單調區間;(2)當時,設的最小值為,若恒成立,求實數t的取值范圍.21.(12分)設,(1)求的單調區間;(2)設恒成立,求實數的取值范圍.22.(10分)已知函數,.(1)求曲線在點處的切線方程;(2)求函數的單調區間;(3)判斷函數的零點個數.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

利用復數相等的條件求得,,則答案可求.【詳解】由,得,.對應的點的坐標為,,.故選:.本題考查復數的代數表示法及其幾何意義,考查復數相等的條件,是基礎題.2.A【解析】

設,延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設,延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.

故選:A.本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.3.A【解析】

由余弦公式的二倍角可得,,再由誘導公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A本題考查了學生對二倍角公式的應用,要求學生熟練掌握三角函數中的誘導公式,屬于簡單題4.B【解析】

依據線性約束條件畫出可行域,目標函數恒過,再分別討論的正負進一步確定目標函數與可行域的基本關系,即可求解【詳解】作出不等式對應的平面區域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區域,要使不等式組所表示的平面區域內存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數的取值范圍為,故選:B.本題考查由目標函數有解求解參數取值范圍問題,分類討論與數形結合思想,屬于中檔題5.C【解析】

根據①③可判斷丙的院校;由②和⑤可判斷丙的學位.【詳解】由題意①甲不是軍事科學院的,③乙不是軍事科學院的;則丙來自軍事科學院;由②來自軍事科學院的不是博士,則丙不是博士;由⑤國防科技大學的是研究生,可知丙不是研究生,故丙為學士.綜上可知,丙來自軍事科學院,學位是學士.故選:C.本題考查了合情推理的簡單應用,由條件的相互牽制判斷符合要求的情況,屬于基礎題.6.B【解析】

首先求出,再根據含有個元素的集合有個子集,計算可得.【詳解】解:,,,子集的個數為.故選:.考查列舉法、描述法的定義,以及交集的運算,集合子集個數的計算公式,屬于基礎題.7.A【解析】

根據題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數,再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場地無關,故甲和乙恰好在同一組的概率是.故選:A.本題考查組合的應用和概率的計算,屬于基礎題.8.D【解析】

先求出球心到四個支點所在球的小圓的距離,再加上側面三角形的高,即可求解.【詳解】設四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質可得,又由到底面的距離即為側面三角形的高,其中高為,所以球心到底面的距離為.故選:D.本題主要考查了空間幾何體的結構特征,以及球的性質的綜合應用,著重考查了數形結合思想,以及推理與計算能力,屬于基礎題.9.A【解析】

利用平面向量的概念、平面向量的加法、減法、數乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A本題以正五角星為載體,考查平面向量的概念及運算法則等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于基礎題.10.A【解析】

根據換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.本題考查換底公式和對數的運算,屬于中檔題.11.B【解析】

根據二項分布的性質可得:,再根據和二次函數的性質求解.【詳解】因為隨機變量滿足,,.所以服從二項分布,由二項分布的性質可得:,因為,所以,由二次函數的性質可得:,在上單調遞減,所以.故選:B本題主要考查二項分布的性質及二次函數的性質的應用,還考查了理解辨析的能力,屬于中檔題.12.C【解析】

將圓,化為標準方程為,求得圓心為.根據圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據求解.【詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質,還考查了運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.90°【解析】

易得平面PAD,P點在與BA垂直的圓面內運動,顯然,PA是圓的直徑時,PA最長;將四棱錐補形為長方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點在與BA垂直的圓面內運動,易知,當P、、A三點共線時,PA達到最長,此時,PA是圓的直徑,則;又,所以平面ABCD,此時可將四棱錐補形為長方體,其體對角線為,底面邊長為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).本題四棱錐外接球有關的問題,考查學生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.14.【解析】

設,,,由,用面積公式表示面積可得到,利用,即得解.【詳解】設,,,由得:,化簡得,由于,故.故答案為:本題考查了解三角形綜合,考查了學生轉化劃歸,綜合分析,數學運算能力,屬于中檔題.15.【解析】解:由題意可知:.16.55【解析】

根據該For語句的功能,可得,可得結果【詳解】根據該For語句的功能,可得則故答案為:55本題考查For語句的功能,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)列聯表見解析,有;(2)分布列見解析,.【解析】

(1)根據題意,結合已知數據即可填寫列聯表,計算出的觀測值,即可進行判斷;(2)先計算出時間在和選取的人數,再求出的可取值,根據古典概型的概率計算公式求得分布列,結合分布列即可求得數學期望.【詳解】(1)因為樣本數據中有流動人員210人,非流動人員90人,所以辦理社保手續所需時間與是否流動人員列聯表如下:辦理社保手續所需時間與是否流動人員列聯表流動人員非流動人員總計辦理社保手續所需時間不超過4天453075辦理社保手續所需時間超過4天16560225總計21090300結合列聯表可算得.有95%的把握認為“辦理社保手續所需時間與是否流動人員”有關.(2)根據分層抽樣可知時間在可選9人,時間在可以選3名,故,則,,,,可知分布列為0123可知.本題考查獨立性檢驗中的計算,以及離散型隨機變量的分布列以及數學期望,涉及分層抽樣,屬綜合性中檔題.18.(Ⅰ);(Ⅱ)分布列見解析,.【解析】

(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.本題主要考查古典概型的計算,考查隨機變量的分布列和期望的計算,意在考查學生對這些知識的理解掌握水平和分析推理能力.19.(1);(2).【解析】

(1)整理得:,再由余弦定理可得,問題得解.(2)由正弦定理得:,,,再代入即可得解.【詳解】(1)由題意,得,∴;(2)由正弦定理,得,,∴.本題主要考查了正、余弦定理及三角形面積公式,考查了轉化思想及化簡能力,屬于基礎題.20.(1)的增區間為,減區間為;(2).【解析】

(1)求出函數的導數,由于參數的范圍對導數的符號有影響,對參數分類,再研究函數的單調區間;(2)由(1)的結論,求出的表達式,由于恒成立,故求出的最大值,即得實數的取值范圍的左端點.【詳解】解:(1)解:,當時,,解得的增區間為,解得的減區間為.(2)解:若,由得,由得,所以函數的減區間為,增區間為;,因為,所以,,令,則恒成立,由于,當時,,故函數在上是減函數,所以成立;當時,若則,故函數在上是增函數,即對時,,與題意不符;綜上,為所求.本題考查導數在最大值與最小值問題中的應用,求解本題關鍵是根據導數研究出函數的單調性,由最值的定義得出函數的最值,本題中第一小題是求出函數的單調區間,第二小題是一個求函數的最值的問題,此類題運算量較大,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論