




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
小結與復習第3章一次方程組
助力教學僅限個人使用,一、方程的有關概念1.
方程:含有未知數的表示等量關系的等式叫作方程.2.
一元一次方程的概念:只含有____個未知數(元),未知數的次數都是____,這樣的方程叫作一元一次方程.3.
方程的解:使方程左右兩邊的值相等,這個數
c就是這個方程的一個解.習慣上記作
x=c.4.
解方程:根據等式的性質求方程的解的過程.一1
助力教學僅限個人使用,1.等式的性質1:等式兩邊都加上或減去同一個數
(或整式),等式兩邊仍然相等.
如果a=b,那么a±
=b±c.2.等式的性質2:等式兩邊都乘同一個數,
或除以
同一個不為0的數,所得結果仍是等式.
如果a=b,那么ac=___
,=
(c≠0).二、等式的性質c3.如果
a=b,那么
b=a.(對稱性)4.如果
a=b,b=c,那么
a=c.(傳遞性)bc
___
助力教學僅限個人使用,解一元一次方程的一般步驟:(1)去分母:方程兩邊都乘各分母的最小公倍數,別漏乘.(2)去括號:注意括號前的系數與符號.(3)移項:把含有未知數的項移到方程的左邊,
常數項移到方程右邊,移項注意要改變符號.(4)合并同類項:把方程化成
ax=b(a≠0)的形式.(5)除以未知數的系數:方程兩邊同除以
x的系數,得
x=m的形式.三、一元一次方程的解法
助力教學僅限個人使用,1.二元一次方程的概念:含有______未知數,并且含未知數的項的次數都是_____的方程,叫作二元一次方程.2.二元一次方程組的概念:只含有______未知數,并且含未知數的項的次數都是_____的方程組.3.二元一次方程組的解:使二元一次方程組中每個方程左右兩邊的值相等,叫作這個方程組的一個解.四、二(三)元一次方程組的有關概念
兩個11兩個
助力教學僅限個人使用,4.三元一次方程組的概念:含有
未知數,并且含未知數的項的次數都是
的方程組叫作三元一次方程組.1三個
助力教學僅限個人使用,五、二元一次方程組的解法①代入消元法:
②加減消元法:轉化代入求解回代寫解檢驗變形加減求解回代寫解檢驗
助力教學僅限個人使用,六、三元一次方程組的解法消元法:通過消元,把一個較復雜的三元一次方程組轉化為簡單易解的階梯形的方程組,從而通過回代得出其解,整個求解過程稱為用消元法解三元一次方程組.
助力教學僅限個人使用,1.列方程(組)的應用題的一般步驟:審:審清題意,分清題中的已知量、未知量.設:設未知數.列:根據題意尋找等量關系列方程.解:解方程(組).驗:檢驗方程的解是否符合題意.答:寫出答案(包括單位).[注意]審題是基礎,找等量關系是關鍵.七、用一次方程與方程組解決實際問題
助力教學僅限個人使用,2.常見的幾種方程類型及等量關系:(1)行程問題中基本量之間的關系:①路程=速度×時間;②相遇問題:全路程=甲走的路程+乙走的路程;③追及問題:甲為快者,
被追路程=甲走路程-乙走路程;④流水問題:v順=v靜+v水,v逆=v靜-v水.
助力教學僅限個人使用,(2)等積變形問題中基本量之間的關系:
①原料面積=成品面積;
②原料體積=成品體積.(3)儲蓄問題中基本量之間的關系:
①本金×利率×年數=利息;
②本金+利息=本息和.
助力教學僅限個人使用,(4)銷售問題中基本量之間的關系:
①實際售價
-
進價(成本)=利潤;
②利潤÷進價×100%=利潤率;
③進價×(1+利潤率)=售價;
標價×折扣數÷10=進價.
助力教學僅限個人使用,(5)和、差、倍、分問題中基本量之間的關系:
①增長率=原有量×增長率;
現有量=原有量+增長量.
②降低量=原有量×降低率;
現有量=原有量
-
降低量.
助力教學僅限個人使用,(6)百分率問題中基本量之間的關系:
①濃度問題:濃度=溶質質量÷溶液質量;
②增長率問題:原量×(1+增長率)=增長后的量;
原量×(1-
減少率)=減少后的量.
助力教學僅限個人使用,考點一方程(組)的有關概念解析:將x=2代入方程得1+a=-1,解得
a=-2.例1
如果x=2是方程的解,那么a的值是
(
)A.0B.2C.-2D.-6方法總結:已知方程的解求字母參數的值,將方程的解代入方程中,得到關于字母參數的方程,解方程即可得字母參數的值.C
助力教學僅限個人使用,1.
若(m-3)x|m|-2+2=1是關于x的一元一次方程,則m的值為_____.-3注意:結合一元一次方程的定義求字母參數的值,需謹記未知數的系數不為0.
針對訓練
助力教學僅限個人使用,例2若(a-3)x+y|a|-
2=9是關于
x,y的二元一次方程,則a的值為______.【解析】由題意,未知數
x的系數為
a-3,所以
a-3≠0.
由未知數
y的次數為|a|
-
2,所以|a|
-
2=1,即
a=±3.但
a≠3.所以
a=
-3.
-3
助力教學僅限個人使用,2.若
xm
-
yn+2
=3是二元一次方程,則mn的值為________.-1針對訓練
助力教學僅限個人使用,考點二等式的基本性質例2
根據等式的性質,下列各式變形正確的是
()A.若
3x
=
5,則
=B.若
x
=
y,則
x
-
6
=
6
-
yC.如果
x
=
y,那么
-8x
=
-8yD.
2x
=
6,那么
x
=C(a≠0)y
-63
助力教學僅限個人使用,3.
(蘭州市第二十中學期末)
下列等式變形中不正確的是
(
)A.
若
x
=
y,則
x
+
5
=
y
+
5B.
若
=
,則
x
=
yC.
若
-3x
=
-3y,則
x
=
yD.
若
mx
=
my,則
x
=
yD(m≠0)針對訓練
助力教學僅限個人使用,考點三一元一次方程的解法例3
解下列方程:(1);解:去分母,得3(2x+1)-12=12x-(10x+1).去括號,得6x+3-12=12x-10x-1.移項,得6x-12x+10x=-1-3+12.合并同類項,得4x=8.系數化為1,得x=2.
助力教學僅限個人使用,提示:先用分配律、去括號簡化方程,再求解較容易.(2).解:去括號,得
移項,得
合并同類項,得
系數化為1,得
助力教學僅限個人使用,4.
解方程:解:去分母,得
2(x-2)=20-5(x+3).去括號,得2x-4=20-5x-15.
移項,得2x+5x=20-15+4.合并同類項,得7x=9.
系數化為1,得針對訓練
助力教學僅限個人使用,考點四二(三)元一次方程組的解法例5解下列方程組
助力教學僅限個人使用,①②解:由①得,x=3+2y.③
將③代入②中,3(3+2y)-8y=13.
解得
y=-2.將
y=-2代入③中,得x=-1.所以原方程組的解為
助力教學僅限個人使用,解:原方程組可化簡為由①×2+②,得
11x=22,解得
x=2.將
x=2代入①中,得
8-
y=5,解得
y=3.所以原方程組的解為①②
助力教學僅限個人使用,解:設解得所以即解得則原方程組可化為方程組中有分數形式,這類方程組可以利用設參數的方法進行消元.
助力教學僅限個人使用,解:①
+③×4,得17x+5y=85.④
③×3-
②,得
7x
-
y=35.⑤
解由④⑤組成的方程組,得
x=5,y=0.
把
x=5,y=0代入③中,得15-
z=18,即z=-3.
所以,原方程組的解為①②③
助力教學僅限個人使用,解:(1)將②代入①中,得1+y+2y=10,解得
y=3.將
y=3代入②中,得所以,原方程的解為5.解下列方程組:①②針對訓練
助力教學僅限個人使用,解:(2)設
則
x=2k,y=3k,z=4k.將其代入方程②中,得2k+3k+4k=45.即
k=5.所以,原方程組的解為①②
助力教學僅限個人使用,考點五
實際問題與一元一次方程例6
客車和貨車同時從甲、乙兩地的中點反向行駛,3小時后,客車到達甲地,貨車離乙地還有30
千米.如果客車與貨車的速度的比為4∶3,那么甲、乙兩地相距多少千米?客車、貨車每小時分別行駛多少千米?分析:問
v客車v貨車4xkm/h3xkm/h甲乙中點客車路程貨車路程30km?行程問題
助力教學僅限個人使用,解:設客車每小時行駛4x
千米,貨車每小時行駛3x
千米,由題意,得3×4x=3×3x+30解得
x=10.所以4x=40,3x=30,2×3×4x=240.答:甲、乙兩地相距240千米,客車每小時行駛40千米,貨車每小時行駛30千米.
助力教學僅限個人使用,練一練6.(甘肅山丹期末)
輪船沿江從
A
港順流行駛到
B
港,比從
B
港返回
A
港少用
3
小時,若船速為
26
千米/時,水速為
2
千米/時,求
A
港和
B
港相距多少千米.
設
A
港和
B
港相距
x
千米.
根據題意,可列出的方程是
(
)A
助力教學僅限個人使用,例7
(甘肅肅州期末)
甲、乙兩工程隊開挖一條水渠各需
10
天、15
天,兩隊合作
2
天后,甲有其他任務,剩下的工作由乙隊單獨做,還需多少天能完成任務?設還需
x
天,可得方程
(
)A. B.C. D.A?工程問題
助力教學僅限個人使用,練一練7.(安徽定遠期末)
整理一批圖書,由一個人做要
40
小時完成,現計劃由一部分人先做
4
小時,再增加
2
人和他們一起做
8
小時,完成這項工作.假設這些人的工作效率相同,具體應先安排多少人工作?解:設應先安排
x
人工作,由題意,得解得
x=2.答:應先安排2
人工作.
助力教學僅限個人使用,例8
某文教店購進一批鋼筆,按進價提高
40%
后標價,為了增加銷量,文教店決定按標價打八折出售,這時每支鋼筆的售價為
28
元.(1)
求每支鋼筆的進價為多少元;解:設每支鋼筆的進價為
x元,由題意,得0.8×(1+40%)x=28解得
x=25.答:每支鋼筆的進價為25
元.?銷售問題
助力教學僅限個人使用,(2)
該文教店賣出這批鋼筆的一半后,決定將剩下的鋼筆以每
3
支
80
元的價格出售,很快銷售完畢,銷售這批鋼筆文教店共獲利
2800
元,求該文教店共購進這批鋼筆多少支?解:設該文教店共購進這批鋼筆
x支,由題意,得解得
x=1200.解:該文教店共購進這批鋼筆1200
支.
助力教學僅限個人使用,練一練8.一件衣服標價
132
元,若以
9
折降價出售,仍可獲利
10%,則這件衣服的進價是
元.(1+10%)x=132×0.9108
助力教學僅限個人使用,?方案選擇問題例9
有兩種通訊套餐,收費方式如表:A套餐B套餐月租費30.00元/月0.00元/月通話費0.15元/分鐘0.30元/分鐘(1)
一個月通話多少分鐘時,兩種套餐收費相同?解:(1)設一個月的通話
x
分鐘時,兩種收費方式相同,根據題意,得30
+
0.15x
=0.3x解得
x
=200.答:一個月的通話200分鐘時,兩種套餐收費相同.
助力教學僅限個人使用,A套餐B套餐月租費30.00元/月0.00元/月通話費0.15元/分鐘0.30元/分鐘(2)
一個月內在本地通話
100
分鐘,選擇___套餐更劃算;一個月內在本地通話
300
分鐘,選擇___套餐更劃算.A:30+0.15×100=45(元)B:0.3×100=30(元)A:30+0.15×300=75(元)B:0.3×300=90(元)BA
助力教學僅限個人使用,練一練9.(寧波·期中)為慶祝“五一”,學校統一組織合唱比賽,七、八年級共
92
人
(其中七年級的人數超過
46
人但不足
90
人)
準備統一購買服裝參加比賽.
若兩個年級分別單獨購買服裝一共應付
5000
元,下表是某服裝廠給出服裝的價格表:
助力教學僅限個人使用,(1)
求七、八年級各有多少學生參加合唱比賽;解:(1)
設七年級有
x
人,則八年級有
(92-
x)
人,因為七年級人數超過
46
但不足
90
人,所以八年級人數不足
46
人.依題意,得50x+60(92-
x)=5000解得
x=52.則92-
x=40.答:七年級有52人,則八年級有40人參加合唱比賽.
助力教學僅限個人使用,(2)
七年級參加合唱比賽的學生中,有
10
名同學抽調去參加繪畫比賽,不能參加合唱比賽,請你為兩個年級設計一種最省錢的購買服裝方案.(2)
七年級:52
-
10=42人,八年級:40人.①兩個年級單獨購買②兩個年級一起買82套③兩個年級一起買91套42×60+40×60=4920(元)82×50=4100(元)91×60=3660(元)因為4920>4100>3660,所以兩個年級一起買91套最省錢.
助力教學僅限個人使用,考點六二元一次方程組的實際應用例10
把一些圖書分給某班學生閱讀,若每人分
3
本,則剩余
20
本;若每人分
4
本,則還缺
25
本.
這個班有多少學生?圖書一共多少本?
助力教學僅限個人使用,解:設該班有
x
名學生,圖書一共有
y
本,則
答:這個班有
45
名學生,圖書一共有155
本.解得分析:圖書總數一定.
助力教學僅限個人使用,解:設該年級寄宿學生有
x人,宿舍有
y間.根據題意可得
解得答:設該年級寄宿學生有
514人,宿舍有
85間.10.某校七年級安排宿舍,若每間宿舍住
6人,則有
4人住不下;若每間住
7
人,則有
1
間只住
3
人,且空余
11
間宿舍.問該年級寄宿學生有多少人?宿舍有多少間?針對訓練
助力教學僅限個人使用,一次方程與方程組概念與性質應用一元一次方程等式的性質二元一次方程二元一次方程組方程的解性質1性質2性質3性質4解方程方程(組)的解一元一次方程一元一次方程實際問題方程(組)消元代入法加減法
助力教學僅限個人使用,謝謝大家教學的藝術不在于傳授本領,而在于善于激勵喚醒和鼓舞。
助力教學僅限個人使用,樣,也可能因討厭一位老師而討厭學習。一個被學生喜歡的老師,其教育效果總是超出一般教師。無論中學生還是小學生,他們對自己喜歡的老師都會有一些普遍認同的標準,諸如尊重和理解學生,寬容、不傷害學生自尊心,平等待人、說話辦事公道、有耐心、不輕易發脾氣等。教師要放下架子,把學生放在心上。“蹲下身子和學生說話,走下講臺給學生講課”;關心學生情感體驗,讓學生感受到被關懷的溫暖;自覺接受學生的評價,努力做學生喜歡的老師。教師要學會寬容,寬容學生的錯誤和過失,寬容學生一時沒有取得很大的進步。蘇霍姆林斯基說過:有時寬容引起的道德震動,比懲罰更強烈。每當想起葉圣陶先生的話:你這糊涂的先生,在你教鞭下有瓦特,在你的冷眼里有牛頓,在你的譏笑里有愛迪生。身為教師,就更加感受到自己職責的神圣和一言一行的重要。善待每一個學生,做學生喜歡的老師,師生雙方才會有愉快的情感體驗。一個教師,只有當他受到學生喜愛時,才能真正實現自己的最大價值。義務教育課程方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版租賃住宅合同
- 2024年隴南市市屬事業單位考試真題
- 二年級上冊數學教案-總復習3|北師大版
- 2024年合肥長豐縣水湖鎮招聘城市管理執法輔助人員真題
- 2024年甘肅人力資源服務股份有限公司招聘真題
- 農村建房安裝合同范本
- 廢除的設計合同范本
- 地理西亞第1課時課件-2024-2025學年七年級地理下學期(人教版2024)
- 修理電機勞務合同范本
- 藝術班轉讓合同范本
- 平面向量在三角函數中的應用(學案)
- 中藥的道地藥材課件
- 《跋傅給事帖》2020年浙江嘉興中考文言文閱讀真題(含答案與翻譯)
- 幼兒園《3-6歲兒童學習與發展指南》健康領域知識試題及答案
- 國家職業技能標準 (2021年版) 嬰幼兒發展引導員
- 幼兒園小班科學:《小雞和小鴨》 PPT課件
- 伯努利方程-ppt課件
- 年產20噸阿齊沙坦原料藥生產車間的設計和實現材料學專業
- 電子公章模板
- 第3章軌道車輛牽引計算
- 基于JSP的校園網站的設計與實現論文
評論
0/150
提交評論